Local Environment Determined Reactant Adsorption Configuration for Enhanced Electrocatalytic Acetone Hydrogenation to Propane
Xuesi Wang
School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005 Australia
These authors contributed equally to this work.
Search for more papers by this authorYan Jiao
School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005 Australia
These authors contributed equally to this work.
Search for more papers by this authorLaiquan Li
School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005 Australia
Search for more papers by this authorCorresponding Author
Yao Zheng
School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005 Australia
Search for more papers by this authorCorresponding Author
Shi-Zhang Qiao
School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005 Australia
Search for more papers by this authorXuesi Wang
School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005 Australia
These authors contributed equally to this work.
Search for more papers by this authorYan Jiao
School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005 Australia
These authors contributed equally to this work.
Search for more papers by this authorLaiquan Li
School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005 Australia
Search for more papers by this authorCorresponding Author
Yao Zheng
School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005 Australia
Search for more papers by this authorCorresponding Author
Shi-Zhang Qiao
School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005 Australia
Search for more papers by this authorAbstract
We demonstrate a widely applicable method to alter the adsorption configuration of multi-carbon containing reactants by no catalyst engineering but simply adjusting the local reaction environment of the catalyst surface. Using electrocatalytic acetone to propane hydrogenation (APH) as a model reaction and common commercial Pt/Pt-based materials as catalysts, we found local H+ concentration can significantly influence the adsorption mode of acetone reactant, for example, in vertical or flat mode, and target product selectivity. Electrocatalytic measurement combined with in situ spectroscopic characterizations reveals that the vertically adsorbed acetone is favorable for propane production while the flatly adsorbed mode suppresses the reaction. DFT calculations indicate that the H coverage on catalyst surface plays a decisive role in the adsorption configuration of acetone. The increased local acidity can facilitate the adsorption configuration of acetone from flat to vertical mode and suppress the competing hydrogen evaluation reaction, which consequently enhances the APH selectivity.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202114253-sup-0001-misc_information.pdf1,010.7 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. K. Nørskov, F. Studt, F. Abild-Pedersen, T. Bligaard, Fundamental concepts in heterogeneous catalysis, Wiley, Hoboken, 2014.
10.1002/9781118892114 Google Scholar
- 2V. R. Stamenkovic, D. Strmcnik, P. P. Lopes, N. M. Markovic, Nat. Mater. 2017, 16, 57–69.
- 3Y. Jiao, Y. Zheng, M. Jaroniec, S. Z. Qiao, Chem. Soc. Rev. 2015, 44, 2060–2086.
- 4X. Liu, J. Xiao, H. Peng, X. Hong, K. Chan, J. K. Nørskov, Nat. Commun. 2017, 8, 15438.
- 5L. R. L. Ting, B. S. Yeo, Curr. Opin. Electrochem. 2018, 8, 126–134.
- 6Y. Wang, J. Liu, G. Zheng, Adv. Mater. 2021, 33, 2005798.
- 7Y. Zheng, A. Vasileff, X. Zhou, Y. Jiao, M. Jaroniec, S. Z. Qiao, J. Am. Chem. Soc. 2019, 141, 7646–7659.
- 8A. Kulkarni, S. Siahrostami, A. Patel, J. K. Norskov, Chem. Rev. 2018, 118, 2302–2312.
- 9J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, U. Stimming, J. Electrochem. Soc. 2005, 152, J23–J26.
- 10J. K. Nørskov, T. Bligaard, J. Rossmeisl, C. H. Christensen, Nat. Chem. 2009, 1, 37–46.
- 11N. Danilovic, R. Subbaraman, D. Strmcnik, V. Stamenkovic, N. Markovic, J. Serb. Chem. Soc. 2013, 78, 2007–2015.
- 12D. Strmcnik, P. P. Lopes, B. Genorio, V. R. Stamenkovic, N. M. Markovic, Nano Energy 2016, 29, 29–36.
- 13J. Song, C. Wei, Z.-F. Huang, C. Liu, L. Zeng, X. Wang, Z. J. Xu, Chem. Soc. Rev. 2020, 49, 2196–2214.
- 14A. Ruban, B. Hammer, P. Stoltze, H. L. Skriver, J. K. Nørskov, J. Mol. Catal. A 1997, 115, 421–429.
- 15A. Nilsson, L. Pettersson, B. Hammer, T. Bligaard, C. H. Christensen, J. K. Nørskov, Catal. Lett. 2005, 100, 111–114.
- 16J. Greeley, J. K. Norskov, L. A. Kibler, A. M. El-Aziz, D. M. Kolb, ChemPhysChem 2006, 7, 1032–1035.
- 17M. H. Groothaert, P. J. Smeets, B. F. Sels, P. A. Jacobs, R. A. Schoonheydt, J. Am. Chem. Soc. 2005, 127, 1394–1395.
- 18P. G. Lustemberg, R. M. Palomino, R. A. Gutiérrez, D. C. Grinter, M. Vorokhta, Z. Liu, P. J. Ramírez, V. Matolín, M. V. Ganduglia-Pirovano, S. D. Senanayake, J. Am. Chem. Soc. 2018, 140, 7681–7687.
- 19P. J. Smeets, R. G. Hadt, J. S. Woertink, P. Vanelderen, R. A. Schoonheydt, B. F. Sels, E. I. Solomon, J. Am. Chem. Soc. 2010, 132, 14736–14738.
- 20Z. Liu, E. Huang, I. Orozco, W. Liao, R. M. Palomino, N. Rui, T. Duchoň, S. Nemšák, D. C. Grinter, M. Mahapatra, Science 2020, 368, 513–517.
- 21T. Iwasita, Electrochim. Acta 2002, 47, 3663–3674.
- 22S. Wasmus, A. Küver, J. Electroanal. Chem. 1999, 461, 14–31.
- 23E. Batista, G. Malpass, A. Motheo, T. Iwasita, J. Electroanal. Chem. 2004, 571, 273–282.
- 24M. Dunwell, Q. Lu, J. M. Heyes, J. Rosen, J. G. Chen, Y. Yan, F. Jiao, B. Xu, J. Am. Chem. Soc. 2017, 139, 3774–3783.
- 25S. Nitopi, E. Bertheussen, S. B. Scott, X. Liu, A. K. Engstfeld, S. Horch, B. Seger, I. E. L. Stephens, K. Chan, C. Hahn, J. K. Norskov, T. F. Jaramillo, I. Chorkendorff, Chem. Rev. 2019, 119, 7610–7672.
- 26Z. Sun, T. Ma, H. Tao, Q. Fan, B. Han, Chem 2017, 3, 560–587.
- 27I. V. Chernyshova, P. Somasundaran, S. Ponnurangam, Proc. Natl. Acad. Sci. USA 2018, 115, E9261–E9270.
- 28J. T. Feaster, C. Shi, E. R. Cave, T. Hatsukade, D. N. Abram, K. P. Kuhl, C. Hahn, J. K. Nørskov, T. F. Jaramillo, ACS Catal. 2017, 7, 4822–4827.
- 29A. Vasileff, X. Zhi, C. Xu, L. Ge, Y. Jiao, Y. Zheng, S.-Z. Qiao, ACS Catal. 2019, 9, 9411–9417.
- 30X. Zhi, A. Vasileff, Y. Zheng, Y. Jiao, S. Qiao, Energy Environ. Sci. 2021, 14, 3912–3930.
- 31A. Vasileff, Y. Zhu, X. Zhi, Y. Zhao, L. Ge, H. M. Chen, Y. Zheng, S. Z. Qiao, Angew. Chem. Int. Ed. 2020, 59, 19649–19653; Angew. Chem. 2020, 132, 19817–19821.
- 32Y. Katayama, F. Nattino, L. Giordano, J. Hwang, R. R. Rao, O. Andreussi, N. Marzari, Y. Shao-Horn, J. Phys. Chem. C 2019, 123, 5951–5963.
- 33X. Liu, P. Schlexer, J. Xiao, Y. Ji, L. Wang, R. B. Sandberg, M. Tang, K. S. Brown, H. Peng, S. Ringe, C. Hahn, T. F. Jaramillo, J. K. Norskov, K. Chan, Nat. Commun. 2019, 10, 32.
- 34Z. Weng, Y. Wu, M. Wang, J. Jiang, K. Yang, S. Huo, X.-F. Wang, Q. Ma, G. W. Brudvig, V. S. Batista, Nat. Commun. 2018, 9, 415.
- 35R. Francke, B. Schille, M. Roemelt, Chem. Rev. 2018, 118, 4631–4701.
- 36C.-T. Dinh, T. Burdyny, M. G. Kibria, A. Seifitokaldani, C. M. Gabardo, F. P. G. De Arquer, A. Kiani, J. P. Edwards, P. De Luna, O. S. Bushuyev, Science 2018, 360, 783–787.
- 37M. B. Ross, P. De Luna, Y. Li, C.-T. Dinh, D. Kim, P. Yang, E. H. Sargent, Nat. Catal. 2019, 2, 648–658.
- 38T.-T. Zhuang, Y. Pang, Z.-Q. Liang, Z. Wang, Y. Li, C.-S. Tan, J. Li, C. T. Dinh, P. De Luna, P.-L. Hsieh, Nat. Catal. 2018, 1, 946–951.
- 39Q. Gong, P. Ding, M. Xu, X. Zhu, M. Wang, J. Deng, Q. Ma, N. Han, Y. Zhu, J. Lu, Nat. Commun. 2019, 10, 2807.
- 40S. A. Akhade, N. Singh, O. Y. Gutiérrez, J. Lopez-Ruiz, H. Wang, J. D. Holladay, Y. Liu, A. Karkamkar, R. S. Weber, A. B. Padmaperuma, Chem. Rev. 2020, 120, 11370–11419.
- 41A. Oasmaa, D. C. Elliott, J. Korhonen, Energy Fuels 2010, 24, 6548–6554.
- 42G. Horányi, Electrochim. Acta 1986, 31, 1095–1103.
- 43B. Bänsch, T. Härtung, H. Baltruschat, J. Heitbaum, J. Electroanal. Chem. Interf. Electrochem. 1989, 259, 207–215.
- 44X. De Hemptinne, K. Schunck, Trans. Faraday Soc. 1969, 65, 591–597.
- 45C. J. Bondue, F. Calle-Vallejo, M. C. Figueiredo, M. T. Koper, Nat. Catal. 2019, 2, 243–250.
- 46X. Wang, C. Xu, M. Jaroniec, Y. Zheng, S. Z. Qiao, Nat. Commun. 2019, 10, 4876.
- 47I. Ledezma-Yanez, W. D. Z. Wallace, P. Sebastián-Pascual, V. Climent, J. M. Feliu, M. T. M. Koper, Nat. Energy 2017, 2, 17031.
- 48K. Schouten, M. Van Der Niet, M. Koper, Phys. Chem. Chem. Phys. 2010, 12, 15217–15224.
- 49U. Sanyal, S. F. Yuk, K. Koh, M. S. Lee, K. Stoerzinger, D. Zhang, L. C. Meyer, J. A. Lopez-Ruiz, A. Karkamkar, J. D. Holladay, D. M. Camaioni, M.-T. Nguyen, V.-A. Glezakou, R. Rousseau, O. Y. Gutierrez, J. A. Lercher, Angew. Chem. Int. Ed. 2021, 60, 290–296; Angew. Chem. 2021, 133, 294–300.
- 50K. Koh, U. Sanyal, M. S. Lee, G. Cheng, M. Song, V. A. Glezakou, Y. Liu, D. Li, R. Rousseau, O. Y. Gutiérrez, A. Karkamkar, M. Derewinski, J. Lercher, Angew. Chem. Int. Ed. 2020, 59, 1501–1505; Angew. Chem. 2020, 132, 1517–1521.
- 51G. Dellepiane, J. Overend, Spectrochim. Acta A Mol. Biomol. Spectrosc. 1966, 22, 593–614.
- 52X. K. Zhang, E. G. Lewars, R. E. March, J. M. Parnis, J. Phys. Chem. 1993, 97, 4320–4325.
- 53R. Subbaraman, D. Tripkovic, K.-C. Chang, D. Strmcnik, A. P. Paulikas, P. Hirunsit, M. Chan, J. Greeley, V. Stamenkovic, N. M. Markovic, Nat. Mater. 2012, 11, 550–557.
- 54K. P. Kepp, Inorg. Chem. 2016, 55, 9461–9470.
- 55W. Sheng, Z. Zhuang, M. Gao, J. Zheng, J. G. Chen, Y. Yan, Nat. Commun. 2015, 6, 5848.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.