Cutting COF-like C4N to Give Colloidal Quantum Dots: Towards Optical Encryption and Bidirectional Sulfur Chemistry via Functional Group and Edge Effects
Chenhao Shu
Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275 China
These authors contributed equally to this work.
Search for more papers by this authorLong Fang
Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275 China
These authors contributed equally to this work.
Search for more papers by this authorMeijia Yang
Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275 China
Search for more papers by this authorLinfeng Zhong
Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275 China
Search for more papers by this authorXiaochuan Chen
Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275 China
Search for more papers by this authorCorresponding Author
Prof. Dingshan Yu
Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275 China
Search for more papers by this authorChenhao Shu
Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275 China
These authors contributed equally to this work.
Search for more papers by this authorLong Fang
Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275 China
These authors contributed equally to this work.
Search for more papers by this authorMeijia Yang
Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275 China
Search for more papers by this authorLinfeng Zhong
Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275 China
Search for more papers by this authorXiaochuan Chen
Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275 China
Search for more papers by this authorCorresponding Author
Prof. Dingshan Yu
Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275 China
Search for more papers by this authorAbstract
Herein, we report the first synthesis of colloidal C4N quantum dots (QDs) and their functional composites and explore their optical activities and edge-selective polysulfide adsorption-catalysis. As-obtained C4NQDs are rich in carbonyl groups and edges, allowing good solution processability and facile assembly with other moieties for creating functionalities. While C4NQDs show normal fluorescence (FL), the QD/poly(vinyl alcohol) (PVA) composites give FL/room-temperature-phosphorescence (RTP) dual-mode emission, enabling the corresponding solution to be used as an encryption ink. The QDs anchored onto carbon nanotubes can be used as a barrier layer to decorate commercial separators, endowing a Li−S cell with excellent cycling stability, high rate capability, and large areal capacity. Computation and experiment studies show that edge sites in C4N favor polysulfide adsorption and catalysis and the enriched edges and carbonyl groups in QDs synergically promotecatalytic conversion of sulfur species.
Conflict of interest
The authors declare no competing interests.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202114182-sup-0001-misc_information.pdf3.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1F. Kessler, Y. Zheng, D. Schwarz, C. Merschjann, W. Schnick, X. Wang, M. Bojdys, Nat. Rev. Mater. 2017, 2, 17030.
- 2L. Lin, Z. Yu, X. Wang, Angew. Chem. Int. Ed. 2019, 58, 6164–6175; Angew. Chem. 2019, 131, 6225–6236.
- 3L. Tan, C. Nie, Z. Ao, H. Sun, T. An, S. Wang, J. Mater. Chem. A 2021, 9, 17–33.
- 4J. Mahmood, F. Li, S.-M. Jung, M. Okyay, I. Ahmad, S.-J. Kim, N. Park, H. Jeong, J.-B. Baek, Nat. Nanotechnol. 2017, 12, 441–446.
- 5J. Mahmood, E. Lee, M. Jung, D. Shin, H.-J. Choi, J.-M. Seo, S.-M. Jung, D. Kim, F. Li, M. Lah, N. Park, H.-J. Shin, J. Oh, J.-B. Baek, Proc. Natl. Acad. Sci. USA 2016, 113, 7414–7419.
- 6P. Kumar, E. Vahidzadeh, U. Thakur, P. Kar, K. Alam, A. Goswami, N. Mahdi, K. Cui, G. Bernard, V. Michaelis, K. Shankar, J. Am. Chem. Soc. 2019, 141, 5415–5436.
- 7I. Ahmad, F. Li, C. Kim, J.-M. Seo, G. Kim, J. Mahmood, H. Jeong, J.-B. Baek, Nano Energy 2019, 56, 581–587.
- 8L. Meng, S. Ren, C. Ma, Y. Yu, Y. Lou, D. Z. Shi, Chem. Commun. 2019, 55, 9491–9494.
- 9Z. Meng, A. Aykanat, K. Mirica, Chem. Mater. 2019, 31, 819–825.
- 10C. Yang, Z.-D. Yang, H. Dong, N. Sun, Y. Lu, F.-M. Zhang, G. Zhang, ACS Energy Lett. 2019, 4, 2251–2258.
- 11
- 11aS.-W. Sun, G.-F. Wang, Y. Zhou, F.-B. Wang, X.-H. Xia, ACS Appl. Mater. Interfaces 2019, 11, 19176–19182;
- 11bZ. Fang, Y. Li, J. Li, C. Shu, L. Zhong, S. Lu, C. Mo, M. Yang, D. Yu, Angew. Chem. Int. Ed. 2021, 60, 17615–17621; Angew. Chem. 2021, 133, 17756–17762.
- 12X. Wang, G. Sun, N. Li, P. Chen, Chem. Soc. Rev. 2016, 45, 2239–2262.
- 13Y. Li, Y. Zhao, H. Cheng, Y. Hu, G. Shi, L. Dai, L. Qu, J. Am. Chem. Soc. 2012, 134, 15–18.
- 14X. Zhang, H. Wang, H. Wang, Q. Zhang, J. Xie, Y. Tian, J. Wang, Y. Xie, Adv. Mater. 2014, 26, 4438–4443.
- 15X. Hu, L. Zhong, C. Shu, Z. Fang, M. Yang, J. Li, D. Yu, J. Am. Chem. Soc. 2020, 142, 4621–4630.
- 16Z.-L. Xu, S. Lin, N. Onofrio, L. Zhou, F. Shi, W. Lu, K. Kang, Q. Zhang, S. Lau, Nat. Commun. 2018, 9, 4164.
- 17J. Mahmood, E. Lee, M. Jung, D. Shin, I.-Y. Jeon, S.-M. Jung, H.-J. Choi, J.-M. Seo, S.-Y. Bae, S.-D. Sohn, N. Park, J. Oh, H.-J. Shin, J.-B. Baek, Nat. Commun. 2015, 6, 6486.
- 18X. Chen, Q. Liu, Q. Wu, P. Du, J. Zhu, S. Dai, S. Yang, Adv. Funct. Mater. 2016, 26, 1719–1728.
- 19Y. Kou, Y. Xu, Z. Guo, D. Jiang, Angew. Chem. Int. Ed. 2011, 50, 8753–8757; Angew. Chem. 2011, 123, 8912–8916.
- 20W. Chen, Z. Sun, C. Jiang, W. Sun, B. Yu, W. Wang, L. Lu, Angew. Chem. Int. Ed. 2021, 60, 16641–16648; Angew. Chem. 2021, 133, 16777–16784.
- 21V. Briega-Martos, A. Ferre-Vilaplana, A. de la Peña, J. L. Segura, F. Zamora, J. M. Feliu, E. Herrero, ACS Catal. 2017, 7, 1015–1024.
- 22J. Zhou, Y. Yang, C.-Y. Zhang, Chem. Commun. 2013, 49, 8605–8607.
- 23J. He, Y. He, Y. Chen, X. Zhang, C. Hu, J. Zhuang, B. Lei, Y. Liu, Chem. Eng. J. 2018, 347, 505–513.
- 24L. Padilha, G. Nootz, P. Olszak, S. Webster, D. Hagan, E. Stryland, L. Levina, V. Sukhovatkin, L. Brzozowski, E. Sargent, Nano Lett. 2011, 11, 1227–1231.
- 25V. Strauss, J. Margraf, C. Dolle, B. Butz, T. Nacken, J. Walter, W. Bauer, W. Peukert, E. Spiecker, T. Clark, D. Guldi, J. Am. Chem. Soc. 2014, 136, 17308–17316.
- 26M. Barman, B. Jana, S. Bhattacharyya, A. Patra, J. Phys. Chem. C 2014, 118, 20034–20041.
- 27J. Ren, J. Sun, X. Sun, R. Song, Z. Xie, S. Zhou, Adv. Opt. Mater. 2018, 6, 1800115.
- 28J. Wei, H. Li, Y. Yuan, C. Sun, D. Hao, G. Zheng, R. Wang, RSC Adv. 2018, 8, 37028–37034.
- 29Y.-J. Ma, X. Fang, G. Xiao, B. Lu, D. Yan, Chem. Commun. 2021, 57, 6684–6687.
- 30Z. Wang, J. Shen, B. Xu, Q. Jiang, S. Ming, L. Yan, Z. Gao, X. Wang, C. Zhu, X. Meng, Adv. Opt. Mater. 2021, 9, 2100421.
- 31J. Gaume, P. Wong-Wah-Chung, A. Rivaton, S. Thérias, J.-L. Gardette, RSC Adv. 2011, 1, 1471–1481.
- 32Y. Deng, D. Zhao, X. Chen, F. Wang, H. Song, D. Shen, Chem. Commun. 2013, 49, 5751–5753.
- 33C. Wang, Y. Chen, Y. Xu, G. Ran, Y. He, Q. Song, ACS Appl. Mater. Interfaces 2020, 12, 10791–10800.
- 34K. Jiang, X. Gao, X. Feng, Y. Wang, Z. Li, H. Lin, Angew. Chem. Int. Ed. 2020, 59, 1263–1269; Angew. Chem. 2020, 132, 1279–1285.
- 35Z. An, C. Zheng, Y. Tao, R. Chen, H. Shi, T. Chen, Z. Wang, H. Li, R. Deng, X. Liu, W. Huang, Nat. Mater. 2015, 14, 685–690.
- 36G. Wheaton, L. Stoel, N. Stevens, C. Frank, Appl. Spectrosc. 1970, 24, 339–343.
- 37M. Mikulla, R. Mülhaupt, Macromol. Chem. Phys. 1998, 199, 795–805.
10.1002/(SICI)1521-3935(19980501)199:5<795::AID-MACP795>3.0.CO;2-8 CAS Web of Science® Google Scholar
- 38T.-Z. Hou, X. Chen, H.-J. Peng, J.-Q. Huang, B.-Q. Li, Q. Zhang, B. Li, Small 2016, 12, 3283–3291.
- 39M. Wang, Z. Sun, H. Ci, Z. Shi, L. Shen, C. Wei, Y. Ding, X. Yang, J. Sun, B. Li, Angew. Chem. Int. Ed. 2021, 60, 24558–24565; Angew. Chem. 2021, 133, 24763–24770.
- 40F. Fan, W. Carter, Y.-M. Chiang, Adv. Mater. 2015, 27, 5203–5209.
- 41H.-J. Peng, G. Zhang, X. Chen, Z.-W. Zhang, W.-T. Xu, J.-Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 2016, 55, 12990–12995; Angew. Chem. 2016, 128, 13184–13189.
- 42Z. Ghazi, X. He, A. Khattak, N. Khan, B. Liang, A. Iqbal, J. Wang, H. Sin, L. Li, Z. Tang, Adv. Mater. 2017, 29, 1606817.
- 43Y. He, Z. Chang, S. Wu, Y. Qiao, S. Bai, K. Jiang, P. He, H. Zhou, Adv. Energy Mater. 2018, 8, 1802130.
- 44J. Zhang, G. Li, Y. Zhang, W. Zhang, X. Wang, Y. Zhao, J. Li, Z. Chen, Nano Energy 2019, 64, 103905.
- 45Z. Li, C. Zhou, J. Hua, X. Hong, C. Sun, H.-W. Li, X. Xu, L. Mai, Adv. Mater. 2020, 32, 1907444.
- 46Y. Pang, J. Wei, Y. Wang, Y. Xia, Adv. Energy Mater. 2018, 8, 1702288.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.