Mechanochemical Solvent-Free Suzuki–Miyaura Cross-Coupling of Amides via Highly Chemoselective N−C Cleavage
Corresponding Author
Dr. Jin Zhang
College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021 China
Search for more papers by this authorPei Zhang
College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021 China
Search for more papers by this authorLei Shao
College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021 China
Search for more papers by this authorRuihong Wang
Institute of Frontier Science and Technology Transfer, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021 China
Search for more papers by this authorYangmin Ma
College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021 China
Search for more papers by this authorCorresponding Author
Prof. Michal Szostak
Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey, 07102 United States
Search for more papers by this authorCorresponding Author
Dr. Jin Zhang
College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021 China
Search for more papers by this authorPei Zhang
College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021 China
Search for more papers by this authorLei Shao
College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021 China
Search for more papers by this authorRuihong Wang
Institute of Frontier Science and Technology Transfer, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021 China
Search for more papers by this authorYangmin Ma
College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021 China
Search for more papers by this authorCorresponding Author
Prof. Michal Szostak
Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey, 07102 United States
Search for more papers by this authorAbstract
Although cross-coupling reactions of amides by selective N−C cleavage are one of the most powerful and burgeoning areas in organic synthesis due to the ubiquity of amide bonds, the development of mechanochemical, solid-state methods remains a major challenge. Herein, we report the first mechanochemical strategy for highly chemoselective, solvent-free palladium-catalyzed cross-coupling of amides by N−C bond activation. The method is conducted in the absence of external heating, for short reaction time and shows excellent chemoselectivity for σ N−C bond activation. The reaction shows excellent functional group tolerance and can be applied to late-stage functionalization of complex APIs and sequential orthogonal cross-couplings exploiting double solventless solid-state methods. The results extend mechanochemical reaction environments to advance the chemical repertoire of N−C bond interconversions to solid-state environmentally friendly mechanochemical methods.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202114146-sup-0001-misc_information.pdf7.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Greenberg, C. M. Breneman, J. F. Liebman, The Amide Linkage: Structural Significance in Chemistry, Biochemistry and Materials Science, Wiley-VCH, New York, 2003.
- 2
- 2aR. C. Larock, Comprehensive Organic Transformations, Wiley, New York, 1999;
- 2bL. Brunton, B. Chabner, B. Knollman, Goodman and Gilman's The Pharmacological Basis of Therapeutics, MacGraw-Hill, New York, 2010;
- 2cS. D. Roughley, A. M. Jordan, J. Med. Chem. 2011, 54, 3451–3479;
- 2dK. Marchildon, Macromol. React. Eng. 2011, 5, 22–54;
- 2eA. A. Kaspar, J. M. Reichert, Drug Discovery Today 2013, 18, 807–817.
- 3L. Pauling, The Nature of the Chemical Bond, Oxford University Press, London, 1940.
- 4For reviews on N−C functionalization, see:
- 4aJ. E. Dander, N. K. Garg, ACS Catal. 2017, 7, 1413–1423;
- 4bS. Shi, S. P. Nolan, M. Szostak, Acc. Chem. Res. 2018, 51, 2589–2599;
- 4cC. Liu, M. Szostak, Org. Biomol. Chem. 2018, 16, 7998–8010;
- 4dD. Kaiser, A. Bauer, M. Lemmerer, N. Maulide, Chem. Soc. Rev. 2018, 47, 7899–7925;
- 4eY. Bourne-Brochu, C. Gosmini, G. Danoun, Chem. Eur. J. 2019, 25, 2663–2674;
- 4fM. B. Chaudhari, B. Gnanaprakasam, Chem. Asian J. 2019, 14, 76–93;
- 4gG. Li, S. Ma, M. Szostak, Trends Chem. 2020, 2, 914–928.
- 5G. Li, M. Szostak, Chem. Rec. 2020, 20, 649–659.
- 6For selected reviews on reaction development using mechanochemistry, see:
- 6aS. L. James, C. J. Adams, C. Bolm, D. Braga, P. Collier, T. Friščić, F. Grepioni, K. D. M. Harris, G. Hyett, W. Jones, A. Krebs, J. Mack, L. Maini, A. G. Orpen, I. P. Parkin, W. C. Shearouse, J. W. Steed, D. C. Waddell, Chem. Soc. Rev. 2012, 41, 413–447;
- 6bG.-W. Wang, Chem. Soc. Rev. 2013, 42, 7668–7700;
- 6cJ.-L. Do, T. Friščić, ACS Cent. Sci. 2017, 3, 13–19;
- 6dJ. G. Hernández, C. Bolm, J. Org. Chem. 2017, 82, 4007–4019;
- 6eT.-X. Métro, J. Martinez, F. Lamaty, ACS Sustainable Chem. Eng. 2017, 5, 9599–9602;
- 6fT. K. Achar, A. Bose, P. Mal, Beilstein J. Org. Chem. 2017, 13, 1907–1931;
- 6gO. Eguaogie, J. S. Vyle, P. F. Conlon, M. A. Gîlea, Y. Liang, Beilstein J. Org. Chem. 2018, 14, 955–970;
- 6hJ. L. Howard, Q. Cao, D. L. Browne, Chem. Sci. 2018, 9, 3080–3094;
- 6iJ. Andersen, J. Mack, Green Chem. 2018, 20, 1435–1443;
- 6jC. Bolm, J. G. Hernández, Angew. Chem. Int. Ed. 2019, 58, 3285–3299; Angew. Chem. 2019, 131, 3320–3335;
- 6kT. Friščić, C. Mottillo, H. M. Titi, Angew. Chem. Int. Ed. 2020, 59, 1018–1029; Angew. Chem. 2020, 132, 1030–1041;
- 6lA. Porcheddu, E. Colacino, L. De Luca, F. Delogu, ACS Catal. 2020, 10, 8344–8394;
- 6mA. P. Amrute, J. De Bellis, M. Felderhoff, F. Schueth, Chem. Eur. J. 2021, 27, 6819–6847;
- 6nY. Chen, G. Mellot, D. van Luijk, C. Creton, R. P. Sijbesma, Chem. Soc. Rev. 2021, 50, 4100–4140;
- 6oB. G. Fiss, A. J. Richard, G. Douglas, M. Kojic, T. Friscic, A. Moores, Chem. Soc. Rev. 2021, 50, 8279–8318;
- 6pJ. A. Leitch, D. L. Browne, Chem. Eur. J. 2021, 27, 9721–9726.
- 7For selected examples on reaction development using mechanochemistry, see:
- 7aP. J. Nichols, C. L. Raston, J. W. Steed, Chem. Commun. 2001, 1062–1063;
- 7bD. A. Fulmer, W. C. Shearouse, S. T. Medonza, J. Mack, Green Chem. 2009, 11, 1821–1825;
- 7cD. Crawford, J. Casaban, R. Haydon, N. Giri, T. McNally, S. L. James, Chem. Sci. 2015, 6, 1645–1649;
- 7dJ.-L. Do, C. Mottillo, D. Tan, V. Štrukil, T. Friščić, J. Am. Chem. Soc. 2015, 137, 2476–2479;
- 7eK. Cousin, S. Menuel, E. Monflier, F. Hapiot, Angew. Chem. Int. Ed. 2017, 56, 10564–10568; Angew. Chem. 2017, 129, 10700–10704;
- 7fJ. L. Howard, M. C. Brand, D. L. Browne, Angew. Chem. Int. Ed. 2018, 57, 16104–16108; Angew. Chem. 2018, 130, 16336–16340;
- 7gC. Bolm, R. Mocci, C. Schumacher, M. Turberg, F. Puccetti, J. G. Hernández, Angew. Chem. Int. Ed. 2018, 57, 2423–2426; Angew. Chem. 2018, 130, 2447–2450;
- 7hR. F. Koby, T. P. Hanusa, N. D. Schley, J. Am. Chem. Soc. 2018, 140, 15934–15942;
- 7iQ. Cao, R. T. Stark, I. A. Fallis, D. L. Browne, ChemSusChem 2019, 12, 2554–2557;
- 7jC. G. Vogt, S. Grätz, S. Lukin, I. Halasz, M. Etter, J. D. Evans, L. Borchardt, Angew. Chem. Int. Ed. 2019, 58, 18942–18947; Angew. Chem. 2019, 131, 19118–19123;
- 7kC. Schumacher, J. G. Hernandez, C. Bolm, Angew. Chem. Int. Ed. 2020, 59, 16357–16360; Angew. Chem. 2020, 132, 16499–16502;
- 7lK. Zhou, H.-Y. Hao, Y.-J. Mao, Q.-Z. Wu, L. Chen, S. Wang, W. Jin, Z.-Y. Xu, S.-J. Lou, D.-Q. Xu, ACS Sustainable Chem. Eng. 2021, 9, 4433–4439.
- 8S. Ni, M. Hribersek, S. K. Baddigam, F. J. L. Ingner, A. Orthaber, P. J. Gates, L. T. Pilarski, Angew. Chem. Int. Ed. 2021, 60, 6660–6666; Angew. Chem. 2021, 133, 6734–6740.
- 9For selected examples of mechanochemical organic transformations from Ito's group, see:
- 9aK. Kubota, Y. Pang, A. Miura, H. Ito, Science 2019, 366, 1500–1504;
- 9bK. Kubota, T. Seo, K. Koide, Y. Hasegawa, H. Ito, Nat. Commun. 2019, 10, 111–122;
- 9cY. Pang, T. Ishiyama, K. Kubota, H. Ito, Chem. Eur. J. 2019, 25, 4654–4659;
- 9dK. Kubota, R. Takahashi, H. Ito, Chem. Sci. 2019, 10, 5837–5842;
- 9eT. Seo, T. Ishiyama, K. Kubota, H. Ito, Chem. Sci. 2019, 10, 8202–8210;
- 9fR. Takahashi, K. Kubota, H. Ito, Chem. Commun. 2020, 56, 407–410;
- 9gT. Seo, K. Kubota, H. Ito, J. Am. Chem. Soc. 2020, 142, 9884–9889;
- 9hY. Pang, J. W. Lee, K. Kubota, H. Ito, Angew. Chem. Int. Ed. 2020, 59, 22570–22576; Angew. Chem. 2020, 132, 22759–22765;
- 9iK. Kubota, N. Toyoshima, D. Miura, J. Jiang, S. Maeda, M. Jin, H. Ito, Angew. Chem. Int. Ed. 2021, 60, 16003–16008; Angew. Chem. 2021, 133, 16139–16144.
- 10G. Meng, J. Zhang, M. Szostak, Chem. Rev. 2021, 121, 12746–12783.
- 11
- 11aL. Hie, N. F. Fine Nathel, T. K. Shah, E. L. Baker, X. Hong, Y.-F. Yang, P. Liu, K. N. Houk, N. K. Garg, Nature 2015, 524, 79–83;
- 11bN. A. Weires, E. L. Baker, N. K. Garg, Nat. Chem. 2016, 8, 75–79.
- 12X. Li, G. Zou, Chem. Commun. 2015, 51, 5089–5092.
- 13
- 13aG. Meng, M. Szostak, Org. Lett. 2015, 17, 4364–4367;
- 13bG. Meng, M. Szostak, Angew. Chem. Int. Ed. 2015, 54, 14518–14522; Angew. Chem. 2015, 127, 14726–14730;
- 13cG. Meng, M. Szostak, ACS Catal. 2017, 7, 7251–7256;
- 13dC. Liu, C. L. Ji, X. Hong, M. Szostak, Angew. Chem. Int. Ed. 2018, 57, 16721–16726; Angew. Chem. 2018, 130, 16963–16968;
- 13eG. Meng, S. Shi, R. Lalancette, R. Szostak, M. Szostak, J. Am. Chem. Soc. 2018, 140, 727–734.
- 14For a review, see: G. Meng, M. Szostak, Eur. J. Org. Chem. 2018, 2352–2365.
- 15For selected studies, see:
- 15aS. Ni, W. Zhang, H. Mei, J. Han, Y. Pan, Org. Lett. 2017, 19, 2536–2539;
- 15bJ. Amani, R. Alam, S. Badir, G. A. Molander, Org. Lett. 2017, 19, 2426–2429;
- 15cH. Yue, L. Guo, S.-C. Lee, X. Liu, M. Rueping, Angew. Chem. Int. Ed. 2017, 56, 3972–3976; Angew. Chem. 2017, 129, 4030–4034;
- 15dW. Srimontree, A. Chatupheeraphat, H.-H. Liao, M. Rueping, Org. Lett. 2017, 19, 3091–3094;
- 15eL. Guo, M. Rueping, Acc. Chem. Res. 2018, 51, 1185–1195;
- 15fL. Liu, D. Zhou, M. Liu, Y. Zhou, T. Chen, Org. Lett. 2018, 20, 2741–2744;
- 15gC. Dorval, E. Dubois, Y. Bourne-Branchu, C. Gosmini, G. Danoun, Adv. Synth. Catal. 2019, 361, 1777–1780;
- 15hM. A. Idris, S. Lee, Org. Lett. 2020, 22, 9190–9195;
- 15iA. Reina, T. Krachko, K. Onida, D. Bouyssi, E. Jeanneau, N. Monteiro, A. Amgoune, ACS Catal. 2020, 10, 2189–2197.
- 16For further examples, see:
- 16aM. P. Sibi, H. Hasegawa, S. R. Ghorpade, Org. Lett. 2002, 4, 3343–3346;
- 16bS. Specklin, J. Cossy, J. Org. Chem. 2015, 80, 3302–3308;
- 16cM. Cui, Z. Chen, T. Liu, H. Wang, Z. Zeng, Tetrahedron Lett. 2017, 58, 3819–3822;
- 16dP.-Q. Huang, H. Geng, Green Chem. 2018, 20, 593–599;
- 16eC. Guissart, A. Barros, L. Rosa Barata, G. Evano, Org. Lett. 2018, 20, 5098–5102;
- 16fS. Tanii, M. Arisawa, T. Tougo, M. Yamaguchi, Org. Lett. 2018, 20, 1756–1759;
- 16gT. Wang, J. Guo, H. Wang, H. Guo, D. Jia, W. Zhang, L. Liu, J. Organomet. Chem. 2018, 877, 80–84;
- 16hP.-X. Zhou, S. Shi, J. Wang, Y. Zhang, C. Li, C. Ge, Org. Chem. Front. 2019, 6, 1942–1947;
- 16iY. Huang, W.-J. Pan, Z.-X. Wang, Org. Chem. Front. 2019, 6, 2284–2290;
- 16jG. S. Lee, J. Won, S. Choi, M.-H. Baik, S. H. Hong, Angew. Chem. Int. Ed. 2020, 59, 16933–16942; Angew. Chem. 2020, 132, 17081–17090;
- 16kC.-G. Yu, Y. Matsuo, Org. Lett. 2020, 22, 950–955;
- 16lT. Kerackian, A. Reina, D. Bouyssi, N. Monteiro, A. Amgoune, Org. Lett. 2020, 22, 2240–2245;
- 16mJ. Jian, Z. He, Y. Zhang, T. Liu, L. Liu, Z. Wang, H. Wang, S. Wang, Z. Zeng, Eur. J. Org. Chem. 2020, 4176–4180;
- 16nY. Zhang, Z. Wang, Z. Tang, Z. Luo, H. Wu, T. Liu, Y. Zhu, Z. Zeng, Eur. J. Org. Chem. 2020, 1620–1628;
- 16oC.-X. Li, Q. Ning, W. Zhao, H.-J. Cao, Y.-P. Wang, H. Yan, C.-S. Lu, Y. Liang, Chem. Eur. J. 2021, 27, 2699–2706.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.