The Crystal Plane is not the Key Factor for CO2-to-Methane Electrosynthesis on Reconstructed Cu2O Microparticles
Dr. Bangwei Deng
Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731 P.R. China
Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001 P.R. China
Search for more papers by this authorDr. Ming Huang
Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001 P.R. China
School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457 Singapore, Singapore
Search for more papers by this authorKanglu Li
College of Architecture and Environment, Sichuan University, Chengdu, 610065 P.R. China
Search for more papers by this authorDr. Xiaoli Zhao
Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731 P.R. China
Search for more papers by this authorQin Geng
Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731 P.R. China
Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001 P.R. China
Search for more papers by this authorDr. Si Chen
Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001 P.R. China
Search for more papers by this authorDr. Hongtao Xie
Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731 P.R. China
Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001 P.R. China
Search for more papers by this authorXing'an Dong
Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731 P.R. China
Search for more papers by this authorHong Wang
Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Fan Dong
Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731 P.R. China
Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001 P.R. China
Search for more papers by this authorDr. Bangwei Deng
Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731 P.R. China
Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001 P.R. China
Search for more papers by this authorDr. Ming Huang
Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001 P.R. China
School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457 Singapore, Singapore
Search for more papers by this authorKanglu Li
College of Architecture and Environment, Sichuan University, Chengdu, 610065 P.R. China
Search for more papers by this authorDr. Xiaoli Zhao
Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731 P.R. China
Search for more papers by this authorQin Geng
Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731 P.R. China
Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001 P.R. China
Search for more papers by this authorDr. Si Chen
Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001 P.R. China
Search for more papers by this authorDr. Hongtao Xie
Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731 P.R. China
Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001 P.R. China
Search for more papers by this authorXing'an Dong
Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731 P.R. China
Search for more papers by this authorHong Wang
Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Fan Dong
Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731 P.R. China
Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001 P.R. China
Search for more papers by this authorAbstract
Cu2O microparticles with controllable crystal planes and relatively high stability have been recognized as a good platform to understand the mechanism of the electrocatalytic CO2 reduction reaction (CO2RR). Herein, we demonstrate that the in situ generated Cu2O/Cu interface plays a key role in determining the selectivity of methane formation, rather than the initial crystal plane of the reconstructed Cu2O microparticles. Experimental results indicate that the methane evolution is dominated on all three different crystal planes with similar Tafel slopes and long-term stabilities. Density functional theory (DFT) calculations further reveal that *CO is protonated via a similar bridge configuration at the Cu2O/Cu interface, regardless of the initial crystal planes of Cu2O. The Gibbs free energy changes (ΔG) of *CHO on different reconstructed Cu2O planes are close and more negative than that of *OCCOH, indicating the methane formation is more favorable than ethylene on all Cu2O crystal planes.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202114080-sup-0001-misc_information.pdf2.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aL. Han, S. Song, M. Liu, S. Yao, Z. Liang, H. Cheng, Z. Ren, W. Liu, R. Lin, G. Qi, X. Liu, Q. Wu, J. Luo, H. L. Xin, J. Am. Chem. Soc. 2020, 142, 12563;
- 1bQ. Hu, Z. Han, X. Wang, G. Li, Z. Wang, X. Huang, H. Yang, X. Ren, Q. Zhang, J. Liu, C. He, Angew. Chem. Int. Ed. 2020, 59, 19054; Angew. Chem. 2020, 132, 19216;
- 1cH. Pan, C. J. Barile, Energy Environ. Sci. 2020, 13, 3567;
- 1dY. Liu, S. Li, L. Dai, J. Li, J. Lv, Z. Zhu, A. Yin, P. Li, B. Wang, Angew. Chem. Int. Ed. 2021, 60, 16409; Angew. Chem. 2021, 133, 16545;
- 1eX. Wang, P. Ou, J. Wicks, Y. Xie, Y. Wang, J. Li, J. Tam, D. Ren, J. Y. Howe, Z. Wang, A. Ozden, Y. Z. Finfrock, Y. Xu, Y. Li, A. S. Rasouli, K. Bertens, A. H. Ip, M. Graetzel, D. Sinton, E. H. Sargent, Nat. Commun. 2021, 12, 3387;
- 1fL. Zhang, X. X. Li, Z. L. Lang, Y. Liu, J. Liu, L. Yuan, W. Y. Lu, Y. S. Xia, L. Z. Dong, D. Q. Yuan, Y. Q. Lan, J. Am. Chem. Soc. 2021, 143, 3808.
- 2
- 2aJ. Kim, W. Choi, J. W. Park, C. Kim, M. Kim, H. Song, J. Am. Chem. Soc. 2019, 141, 6986;
- 2bQ. Zhu, X. Sun, D. Yang, J. Ma, X. Kang, L. Zheng, J. Zhang, Z. Wu, B. Han, Nat. Commun. 2019, 10, 3851;
- 2cR. M. Arán-Ais, R. Rizo, P. Grosse, G. Algara-Siller, K. Dembélé, M. Plodinec, T. Lunkenbein, S. W. Chee, B. R. Cuenya, Nat. Commun. 2020, 11, 3489;
- 2dY. Li, D. Kim, S. Louisia, C. Xie, Q. Kong, S. Yu, T. Lin, S. Aloni, S. C. Fakra, P. Yang, Proc. Natl. Acad. Sci. USA 2020, 117, 9194;
- 2eT. Möller, F. Scholten, T. N. Thanh, I. Sinev, J. Timoshenko, X. Wang, Z. Jovanov, M. Gliech, B. Roldan Cuenya, A. S. Varela, P. Strasser, Angew. Chem. Int. Ed. 2020, 59, 17974; Angew. Chem. 2020, 132, 18130;
- 2fH. Li, T. Liu, P. Wei, L. Lin, D. Gao, G. Wang, X. Bao, Angew. Chem. Int. Ed. 2021, 60, 14329; Angew. Chem. 2021, 133, 14450;
- 2gM. Huang, S. Gong, C. Wang, Y. Yang, P. Jiang, P. Wang, L. Hu, Q. Chen, Angew. Chem. Int. Ed. 2021, 60, 23002; Angew. Chem. 2021, 133, 23184.
- 3
- 3aY. Lum, J. W. Ager, Angew. Chem. Int. Ed. 2018, 57, 551; Angew. Chem. 2018, 130, 560;
- 3bR. M. Arán-Ais, F. Scholten, S. Kunze, R. Rizo, B. Roldan Cuenya, Nat. Energy 2020, 5, 317;
- 3cC. J. Chang, S. C. Lin, H. C. Chen, J. Wang, K. J. Zheng, Y. Zhu, H. M. Chen, J. Am. Chem. Soc. 2020, 142, 12119;
- 3dZ. Chen, T. Wang, B. Liu, D. Cheng, C. Hu, G. Zhang, W. Zhu, H. Wang, Z. J. Zhao, J. Gong, J. Am. Chem. Soc. 2020, 142, 6878;
- 3eT. C. Chou, C. C. Chang, H. L. Yu, W. Y. Yu, C. L. Dong, J. J. Velasco-Velez, C. H. Chuang, L. C. Chen, J. F. Lee, J. M. Chen, H. L. Wu, J. Am. Chem. Soc. 2020, 142, 2857;
- 3fQ. Lei, H. Zhu, K. Song, N. Wei, L. Liu, D. Zhang, J. Yin, X. Dong, K. Yao, N. Wang, X. Li, B. Davaasuren, J. Wang, Y. Han, J. Am. Chem. Soc. 2020, 142, 4213.
- 4
- 4aJ. Li, Y. Kuang, Y. Meng, X. Tian, W.-H. Hung, X. Zhang, A. Li, M. Xu, W. Zhou, C.-S. Ku, C.-Y. Chiang, G. Zhu, J. Guo, X. Sun, H. Dai, J. Am. Chem. Soc. 2020, 142, 7276;
- 4bY. Wang, Z. Wang, C.-T. Dinh, J. Li, A. Ozden, M. Golam Kibria, A. Seifitokaldani, C.-S. Tan, C. M. Gabardo, M. Luo, H. Zhou, F. Li, Y. Lum, C. McCallum, Y. Xu, M. Liu, A. Proppe, A. Johnston, P. Todorovic, T.-T. Zhuang, D. Sinton, S. O. Kelley, E. H. Sargent, Nat. Catal. 2020, 3, 98;
- 4cQ. Zhao, J. M. P. Martirez, E. A. Carter, J. Am. Chem. Soc. 2021, 143, 6152.
- 5Y. Gao, Q. Wu, X. Liang, Z. Wang, Z. Zheng, P. Wang, Y. Liu, Y. Dai, M. H. Whangbo, B. Huang, Adv. Sci. 2020, 7, 1902820.
- 6
- 6aK. Jiang, R. B. Sandberg, A. J. Akey, X. Liu, D. C. Bell, J. K. Nørskov, K. Chan, H. Wang, Nat. Catal. 2018, 1, 111;
- 6bF. Scholten, K. C. Nguyen, J. P. Bruce, M. Heyde, B. Roldan Cuenya, Angew. Chem. Int. Ed. 2021, 60, 19169.
- 7
- 7aH. Jung, S. Y. Lee, C. W. Lee, M. K. Cho, D. H. Won, C. Kim, H. S. Oh, B. K. Min, Y. J. Hwang, J. Am. Chem. Soc. 2019, 141, 4624;
- 7bP. Iyengar, J. Huang, G. L. De Gregorio, C. Gadiyar, R. Buonsanti, Chem. Commun. (Camb.) 2019, 55, 8796;
- 7cJ. D. Yi, R. Xie, Z. L. Xie, G. L. Chai, T. F. Liu, R. P. Chen, Y. B. Huang, R. Cao, Angew. Chem. Int. Ed. 2020, 59, 23641; Angew. Chem. 2020, 132, 23849;
- 7dD. Zhong, Z. J. Zhao, Q. Zhao, D. Cheng, B. Liu, G. Zhang, W. Deng, H. Dong, L. Zhang, J. Li, J. Li, J. Gong, Angew. Chem. Int. Ed. 2021, 60, 4879; Angew. Chem. 2021, 133, 4929;
- 7eP. P. Yang, X. L. Zhang, F. Y. Gao, Y. R. Zheng, Z. Z. Niu, X. Yu, R. Liu, Z. Z. Wu, S. Qin, L. P. Chi, Y. Duan, T. Ma, X. S. Zheng, J. F. Zhu, H. J. Wang, M. R. Gao, S. H. Yu, J. Am. Chem. Soc. 2020, 142, 6400;
- 7fA. Herzog, A. Bergmann, H. S. Jeon, J. Timoshenko, S. Kuhl, C. Rettenmaier, M. Lopez Luna, F. T. Haase, B. Roldan Cuenya, Angew. Chem. Int. Ed. 2021, 60, 7426; Angew. Chem. 2021, 133, 7502;
- 7gH. S. Jeon, J. Timoshenko, C. Rettenmaier, A. Herzog, A. Yoon, S. W. Chee, S. Oener, U. Hejral, F. T. Haase, B. Roldan Cuenya, J. Am. Chem. Soc. 2021, 143, 7578;
- 7hD. Kim, S. Lee, J. D. Ocon, B. Jeong, J. K. Lee, J. Lee, Phys. Chem. Chem. Phys. 2015, 17, 824.
- 8
- 8aW. Fu, Z. Liu, T. Wang, J. Liang, S. Duan, L. Xie, J. Han, Q. Li, ACS Sustainable Chem. Eng. 2020, 8, 15223;
- 8bB. Liu, X. Yao, Z. Zhang, C. Li, J. Zhang, P. Wang, J. Zhao, Y. Guo, J. Sun, C. Zhao, ACS Appl. Mater. Interfaces 2021, 13, 39165;
- 8cX. Tan, C. Yu, C. Zhao, H. Huang, X. Yao, X. Han, W. Guo, S. Cui, H. Huang, J. Qiu, ACS Appl. Mater. Interfaces 2019, 11, 9904.
- 9A. D. Handoko, C. W. Ong, Y. Huang, Z. G. Lee, L. Lin, G. B. Panetti, B. S. Yeo, J. Phys. Chem. C 2016, 120, 20058.
- 10
- 10aC. Kim, K. M. Cho, K. Park, J. Y. Kim, G. T. Yun, F. M. Toma, I. Gereige, H. T. Jung, Adv. Funct. Mater. 2021, 31, 2102142;
- 10bN. Sikdar, J. R. C. Junqueira, S. Dieckhofer, T. Quast, M. Braun, Y. Song, H. B. Aiyappa, S. Seisel, J. Weidner, D. Ohl, C. Andronescu, W. Schuhmann, Angew. Chem. Int. Ed. 2021, 60, 23427–23434; Angew. Chem. 2021, 133, 23616–23624;
- 10cX. Yuan, S. Chen, D. Cheng, L. Li, W. Zhu, D. Zhong, Z. J. Zhao, J. Li, T. Wang, J. Gong, Angew. Chem. Int. Ed. 2021, 60, 15344; Angew. Chem. 2021, 133, 15472.
- 11J. Wang, H. Y. Tan, Y. Zhu, H. Chu, H. M. Chen, Angew. Chem. Int. Ed. 2021, 60, 17254; Angew. Chem. 2021, 133, 17394.
- 12
- 12aX. Wang, A. Xu, F. Li, S. F. Hung, D. H. Nam, C. M. Gabardo, Z. Wang, Y. Xu, A. Ozden, A. S. Rasouli, A. H. Ip, D. Sinton, E. H. Sargent, J. Am. Chem. Soc. 2020, 142, 3525;
- 12bY. Wang, J. Liu, G. Zheng, Adv. Mater. 2021, 33, 2005798;
- 12cS. Zhu, E. P. Delmo, T. Li, X. Qin, J. Tian, L. Zhang, M. Shao, Adv. Mater. 2021, 33, 2005484;
- 12dZ. Sun, T. Ma, H. Tao, Q. Fan, B. Han, Chem 2017, 3, 560;
- 12eA. D. Handoko, F. X. Wei, Jenndy, B. S. Yeo, Z. W. Seh, Nat. Catal. 2018, 1, 922;
- 12fY. Y. Birdja, E. Perez-Gallent, M. C. Figueiredo, A. J. Gottle, F. Calle-Vallejo, M. T. M. Koper, Nat. Energy 2019, 4, 732;
- 12gS. Nitopi, E. Bertheussen, S. B. Scott, X. Liu, A. K. Engstfeld, S. Horch, B. Seger, I. E. L. Stephens, K. Chan, C. Hahn, J. K. Nørskov, T. F. Jaramillo, I. Chorkendorff, Chem. Rev. 2019, 119, 7610.
- 13
- 13aD.-F. Zhang, H. Zhang, L. Guo, K. Zheng, X.-D. Han, Z. Zhang, J. Mater. Chem. 2009, 19, 5220;
- 13bY. Shang, L. Guo, Adv. Sci. 2015, 2, 1500140.
- 14D. Ren, Y. Deng, A. D. Handoko, C. S. Chen, S. Malkhandi, B. S. Yeo, ACS Catal. 2015, 5, 2814.
- 15
- 15aD. K. Lambert, Electrochim. Acta 1996, 41, 623;
- 15bJ. Heyes, M. Dunwell, B. Xu, J. Phys. Chem. C 2016, 120, 17334.
- 16
- 16aE. Pérez-Gallent, M. C. Figueiredo, F. Calle-Vallejo, M. T. Koper, Angew. Chem. Int. Ed. 2017, 56, 3621; Angew. Chem. 2017, 129, 3675;
- 16bY. Kim, S. Park, S.-J. Shin, W. Choi, B. K. Min, H. Kim, W. Kim, Y. J. Hwang, Energy Environ. Sci. 2020, 13, 4301.
- 17S. Zhu, B. Jiang, W. B. Cai, M. Shao, J. Am. Chem. Soc. 2017, 139, 15664.
- 18K. Jiang, H. Wang, W.-B. Cai, H. Wang, ACS Nano 2017, 11, 6451.
- 19M. Moradzaman, G. Mul, ACS Catal. 2020, 10, 8049.
- 20
- 20aC. W. Li, J. Ciston, M. W. Kanan, Nature 2014, 508, 504;
- 20bM. Esmaeilirad, A. Kondori, B. Song, A. Ruiz Belmonte, J. Wei, K. Kucuk, S. M. Khanvilkar, E. Efimoff, W. Chen, C. U. Segre, R. Shahbazian-Yassar, M. Asadi, ACS Nano 2020, 14, 2099.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.