Janus Photonic Microspheres with Bridged Lamellar Structures via Droplet-Confined Block Copolymer Co-Assembly
Qilin Guo
Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350 China
Search for more papers by this authorYulian Li
Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350 China
Search for more papers by this authorQiujun Liu
Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350 China
Search for more papers by this authorDr. Yuesheng Li
Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350 China
Search for more papers by this authorCorresponding Author
Dr. Dong-Po Song
Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350 China
Search for more papers by this authorQilin Guo
Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350 China
Search for more papers by this authorYulian Li
Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350 China
Search for more papers by this authorQiujun Liu
Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350 China
Search for more papers by this authorDr. Yuesheng Li
Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350 China
Search for more papers by this authorCorresponding Author
Dr. Dong-Po Song
Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350 China
Search for more papers by this authorAbstract
Artificial self-assembly systems typically exhibit limited capability in creating nature-inspired complex materials with advanced functionalities. Here, an effective co-assembly strategy is demonstrated for the facile creation of complex photonic structures with intriguing light reflections. Two different lipophilic and amphiphilic bottlebrush block copolymers (BCPs) are placed within shrinking droplets to enable a cooperative working mechanism of microphase segregation and organized spontaneous emulsification, respectively. Layer assemblies of the lipophilic BCP and uniform water nanodroplets stabilized by the bottlebrush surfactant are both generated, and co-assembled into a bridged lamellar structure with the alternating arrangement of layers and closely packed nanodroplet arrays. Janus microspheres with diverse dual optical characteristics are successfully fabricated, and reflected wavelengths of light are highly tunable simply by changing the formulation or molecular weight of BCP.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202113759-sup-0001-misc_information.pdf2.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aS. Tadepalli, J. M. Slocik, M. K. Gupta, R. R. Naik, S. Singamaneni, Chem. Rev. 2017, 117, 12705–12763;
- 1bR. Xiong, J. Luan, S. Kang, C. Ye, S. Singamaneni, V. V. Tsukruk, Chem. Soc. Rev. 2020, 49, 983–1031;
- 1cP. Vukusic, J. R. Sambles, Nature 2003, 424, 852–855;
- 1dV. Saranathan, C. O. Osuji, S. G. J. Mochrie, H. Noh, S. Narayanan, A. Sandy, E. R. Dufresne, R. O. Prum, Proc. Natl. Acad. Sci. USA 2010, 107, 11676–11681;
- 1eS. Vignolini, P. J. Rudall, A. V. Rowland, A. Reed, E. Moyroud, R. B. Faden, J. J. Baumberg, B. J. Glover, U. Steiner, Proc. Natl. Acad. Sci. USA 2012, 109, 15712–15715;
- 1fR. W. Corkery, E. C. Tyrode, Interface Focus 2017, 7, 20160154.
- 2M. Jacobs, M. Lopez-Garcia, O. P. Phrathep, T. Lawson, R. Oulton, H. M. Whitney, Nat. Plants 2016, 2, 16162.
- 3H. L. Park, H. Kim, D. Lim, H. Zhou, Y. H. Kim, Y. Lee, S. Park, T. W. Lee, Adv. Mater. 2020, 32, 1906899.
- 4J. Teyssier, S. V. Saenko, D. van der Marel, M. C. Milinkovitch, Nat. Commun. 2015, 6, 6368.
- 5
- 5aS.-H. Kim, J.-M. Lim, W. C. Jeong, D.-G. Choi, S.-M. Yang, Adv. Mater. 2008, 20, 3211–3217;
- 5bZ. Yu, C. F. Wang, L. Ling, L. Chen, S. Chen, Angew. Chem. Int. Ed. 2012, 51, 2375–2378; Angew. Chem. 2012, 124, 2425–2428;
- 5cJ. G. Park, S. H. Kim, S. Magkiriadou, T. M. Choi, Y. S. Kim, V. N. Manoharan, Angew. Chem. Int. Ed. 2014, 53, 2899–2903; Angew. Chem. 2014, 126, 2943–2947;
- 5dE. S. A. Goerlitzer, R. N. Klupp Taylor, N. Vogel, Adv. Mater. 2018, 30, 1706654;
- 5eT. M. Choi, G. H. Lee, Y. S. Kim, J. G. Park, H. Hwang, S. H. Kim, Adv. Mater. 2019, 31, 1900693;
- 5fS. K. Nam, J. B. Kim, S. H. Han, S. H. Kim, ACS Nano 2020, 14, 15714–15722;
- 5gJ. Zhang, J. Zhang, Y. Ou, Y. Qin, H. Wen, W. Dong, R. Wang, S. Chen, Z. Yu, Small 2021, 17, 2007426.
- 6Q. J. Liu, Y. Li, J. C. Xu, H. F. Lu, Y. Li, D. P. Song, ACS Nano 2021, 15, 5534–5544.
- 7M. Ge, C. Cao, J. Huang, X. Zhang, Y. Tang, X. Zhou, K. Zhang, Z. Chen, Y. Lai, Nanoscale Horiz. 2018, 3, 235–260.
- 8
- 8aH. S. Kang, J. Lee, S. M. Cho, T. H. Park, M. J. Kim, C. Park, S. W. Lee, K. L. Kim, D. Y. Ryu, J. Huh, E. L. Thomas, C. Park, Adv. Mater. 2017, 29, 1700084;
- 8bY. Liu, K. He, G. Chen, W. R. Leow, X. Chen, Chem. Rev. 2017, 117, 12893–12941.
- 9
- 9aH. G. Cui, Z. Y. Chen, S. Zhong, K. L. Wooley, D. J. Pochan, Science 2007, 317, 647–650;
- 9bY. Y. Mai, A. Eisenberg, Chem. Soc. Rev. 2012, 41, 5969–5985;
- 9cA. H. Gröschel, A. Walther, T. I. Lobling, F. H. Schacher, H. Schmalz, A. H. Müller, Nature 2013, 503, 247–251;
- 9dY. Kang, J. J. Walish, T. Gorishnyy, E. L. Thomas, Nat. Mater. 2007, 6, 957–960;
- 9eR. Deng, J. Xu, G. R. Yi, J. W. Kim, J. Zhu, Adv. Funct. Mater. 2021, 31, 2008169;
- 9fM. Stefik, S. Guldin, S. Vignolini, U. Wiesner, U. Steiner, Chem. Soc. Rev. 2015, 44, 5076–5091;
- 9gP. Lova, G. Manfredi, D. Comoretto, Adv. Opt. Mater. 2018, 6, 1800730;
- 9hY. Yang, H. Kim, J. Xu, M. S. Hwang, D. Tian, K. Wang, L. Zhang, Y. Liao, H. G. Park, G. R. Yi, X. Xie, J. Zhu, Adv. Mater. 2018, 30, 1707344;
- 9iY. Yang, Y. Chen, Z. Hou, F. Li, M. Xu, Y. Liu, D. Tian, L. Zhang, J. Xu, J. Zhu, ACS Nano 2020, 14, 16057–16064.
- 10
- 10aA. L. Liberman-Martin, C. K. Chu, R. H. Grubbs, Macromol. Rapid Commun. 2017, 38, 1700058;
- 10bD. P. Song, Y. Lin, Y. Gai, N. S. Colella, C. Li, X. H. Liu, S. Gido, J. J. Watkins, J. Am. Chem. Soc. 2015, 137, 3771–3774;
- 10cD. P. Song, C. Li, N. S. Colella, W. Xie, S. Li, X. Lu, S. Gido, J. H. Lee, J. J. Watkins, J. Am. Chem. Soc. 2015, 137, 12510–12513;
- 10dD. P. Song, A. Naik, S. Li, A. Ribbe, J. J. Watkins, J. Am. Chem. Soc. 2016, 138, 13473–13476.
- 11
- 11aJ. J. Shin, E. J. Kim, K. H. Ku, Y. J. Lee, C. J. Hawker, B. J. Kim, ACS Macro Lett. 2020, 9, 306–317;
- 11bS.-J. Jeon, G.-R. Yi, S.-M. Yang, Adv. Mater. 2008, 20, 4103–4108;
- 11cD. Klinger, C. X. Wang, L. A. Connal, D. J. Audus, S. G. Jang, S. Kraemer, K. L. Killops, G. H. Fredrickson, E. J. Kramer, C. J. Hawker, Angew. Chem. Int. Ed. 2014, 53, 7018–7022; Angew. Chem. 2014, 126, 7138–7142;
- 11dJ. M. Shin, Y. Kim, H. Yun, G. R. Yi, B. J. Kim, ACS Nano 2017, 11, 2133–2142;
- 11eE. J. Kim, J. J. Shin, T. Do, G. S. Lee, J. Park, V. Thapar, J. Choi, J. Bang, G. R. Yi, S. M. Hur, J. G. Kim, B. J. Kim, ACS Nano 2021, 15, 5513–5522.
- 12
- 12aD. P. Song, T. H. Zhao, G. Guidetti, S. Vignolini, R. M. Parker, ACS Nano 2019, 13, 1764–1771;
- 12bY. Dong, Z. Ma, D. P. Song, G. Ma, Y. Li, ACS Nano 2021, 15, 8770–8779.
- 13Q. He, K. H. Ku, H. Vijayamohanan, B. J. Kim, T. M. Swager, J. Am. Chem. Soc. 2020, 142, 10424–10430.
- 14
- 14aX. Chen, X. Yang, D.-P. Song, Y.-F. Men, Y. Li, Macromolecules 2021, 54, 3668–3677;
- 14bT. H. Zhao, G. Jacucci, X. Chen, D. P. Song, S. Vignolini, R. M. Parker, Adv. Mater. 2020, 32, 2002681;
- 14cY. L. Li, X. Chen, H. K. Geng, Y. Dong, B. Wang, Z. Ma, L. Pan, G. Q. Ma, D. P. Song, Y. S. Li, Angew. Chem. Int. Ed. 2021, 60, 3647–3653; Angew. Chem. 2021, 133, 3691–3697;
- 14dX. Li, B. Wang, Q. J. Liu, R. Zhao, D. P. Song, Y. Li, Langmuir 2021, 37, 6744–6753.
- 15J. Matejkova-Plskova, S. Shiojiri, M. Shiojiri, J. Microsc. 2009, 236, 88–93.
- 16L. Wu, J. J. Willis, I. S. McKay, B. T. Diroll, J. Qin, M. Cargnello, C. J. Tassone, Nature 2017, 548, 197–201.
- 17
- 17aH. Wang, S. Yang, S. N. Yin, L. Chen, S. Chen, ACS Appl. Mater. Interfaces 2015, 7, 8827–8833;
- 17bS. N. Yin, S. Yang, C. F. Wang, S. Chen, J. Am. Chem. Soc. 2016, 138, 566–573.
- 18
- 18aY. K. Kang Hee Ku, G.-R. Yi, Y. Sik Jung, B. J. Kim, ACS Nano 2015, 9, 11333–11341;
- 18bK. H. Ku, Y. J. Lee, G.-R. Yi, S. G. Jang, B. V. K. J. Schmidt, K. Liao, D. Klinger, C. J. Hawker, B. J. Kim, Macromolecules 2017, 50, 9276–9285.
- 19
- 19aE. B. Zhulina, S. S. Sheiko, O. V. Borisov, ACS Macro Lett. 2019, 8, 1075–1079;
- 19bE. B. Zhulina, S. S. Sheiko, A. V. Dobrynin, O. V. Borisov, Macromolecules 2020, 53, 2582–2593.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.