A Near-Infrared Absorbing and Emissive Quadruple Helicene Enabled by the Scholl Reaction of Perylene
Dr. Sai Ho Pun
Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
Search for more papers by this authorKa Man Cheung
Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
Search for more papers by this authorDaiyue Yang
Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 230032 China
Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, China
Search for more papers by this authorDr. Han Chen
Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
Search for more papers by this authorDr. Yujing Wang
Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
Search for more papers by this authorStephen V. Kershaw
Department of Materials Science and Engineering and Centre for Functional Photonics (CFP), City University of Hong Kong, Hong Kong, China
Search for more papers by this authorCorresponding Author
Prof. Qian Miao
Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 230032 China
Search for more papers by this authorDr. Sai Ho Pun
Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
Search for more papers by this authorKa Man Cheung
Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
Search for more papers by this authorDaiyue Yang
Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 230032 China
Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, China
Search for more papers by this authorDr. Han Chen
Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
Search for more papers by this authorDr. Yujing Wang
Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
Search for more papers by this authorStephen V. Kershaw
Department of Materials Science and Engineering and Centre for Functional Photonics (CFP), City University of Hong Kong, Hong Kong, China
Search for more papers by this authorCorresponding Author
Prof. Qian Miao
Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 230032 China
Search for more papers by this authorAbstract
Herein, we report the synthesis, structural analysis, optical and chiroptical properties of a novel quadruple helicene, which has two [6] and two [7]helicene moieties fused in a contorted framework of 92 sp2 carbon atoms. It was synthesized by the Scholl reaction of a perylene-containing substrate with the formation of eight carbon-carbon bonds on the perylene unit in a single synthetic operation. Chemical oxidation of the quadruple helicene with tris(4-bromophenyl)ammoniumyl hexachloroantimonate resulted in an air-stable dication, which exhibits the same helicity in its four helicene moieties as unambiguously identified by single-crystal X-ray crystallography. The quadruple helicene exhibits unusual near-infrared absorption and emission with absorption and emission maxima at 848 nm and 977 nm, respectively, and its isolated enantiomers exhibit electronic circular dichroism in the near-infrared and visible-light regions.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202113203-sup-0001-misc_information.pdf2.2 MB | Supporting Information |
ange202113203-sup-0001-perylene-quadruplehelicene-dication.cif2.4 MB | Supporting Information |
ange202113203-sup-0001-tetraaryl-perylene.cif3.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Gingras, G. Félix, R. Peresutti, Chem. Soc. Rev. 2013, 42, 1007–1050.
- 2M. Gingras, Chem. Soc. Rev. 2013, 42, 1051–1095.
- 3Y. Shen, C.-F. Chen, Chem. Rev. 2012, 112, 1463–1535.
- 4C. Li, Y. Yang, Q. Miao, Chem. Asian J. 2018, 13, 884–894.
- 5K. Kato, Y. Segawa, K. Itami, Synlett 2019, 30, 370–377.
- 6L. Shan, D. Liu, H. Li, X. Xu, B. Shan, J.-B. Xu, Q. Miao, Adv. Mater. 2015, 27, 3418–3423.
- 7T. Fujikawa, Y. Segawa, K. Itami, J. Am. Chem. Soc. 2015, 137, 7763–7768.
- 8Y. Hu, G. M. Paternò, X.-Y. Wang, X.-C. Wang, M. Guizzardi, Q. Chen, D. Schollmeyer, X.-Y. Cao, G. Cerullo, F. Scotognella, K. Müllen, A. Narita, J. Am. Chem. Soc. 2019, 141, 12797–12803.
- 9C. Li, H. Wu, T. Zhang, Y. Liang, B. Zheng, J. Xia, J. Xu, Q. Miao, Chem 2018, 4, 1416–1426.
- 10C. Li, Y. Wang, T. Zhang, B. Zheng, J. Xu, Q. Miao, Chem. Asian J. 2019, 14, 1676–1680.
- 11T. Mori, Chem. Rev. 2021, 121, 2373–2412.
- 12L. Zhang, I. Song, J. Ahn, M. Han, M. Linares, M. Surin, H.-J. Zhang, J. H. Oh, J. Lin, Nat. Commun. 2021, 12, 142.
- 13X. Xiao, S. K. Pedersen, D. Aranda, J. Yang, R. A. Wiscons, M. Pittelkow, M. L. Steigerwald, F. Santoro, N. J. Schuster, C. Nuckolls, J. Am. Chem. Soc. 2021, 143, 983–991.
- 14M. Grzybowski, B. Sadowski, H. Butenschön, D. T. Gryko, Angew. Chem. Int. Ed. 2020, 59, 2998–3027; Angew. Chem. 2020, 132, 3020–3050.
- 15M. Grzybowski, K. Skonieczny, H. Butenschön, D. T. Gryko, Angew. Chem. Int. Ed. 2013, 52, 9900–9930; Angew. Chem. 2013, 125, 10084–10115.
- 16Y. Yang, L. Yuan, B. Shan, Z. Liu, Q. Miao, Chem. Eur. J. 2016, 22, 18620–18627.
- 17Y. Chen, T. Marszalek, T. Fritz, M. Baumgarten, M. Wagner, W. Pisula, L. Chen, K. Müllen, Chem. Commun. 2017, 53, 8474–8477.
- 18K. Y. Cheung, S. Gui, C. Deng, H. Liang, Z. Xia, Z. Liu, L. Chi, Q. Miao, Chem 2019, 5, 838–847.
- 19S. H. Pun, Y. Wang, M. Chu, C. K. Chan, Y. Li, Z. Liu, Q. Miao, J. Am. Chem. Soc. 2019, 141, 9680–9686.
- 20S. H. Pun, C. K. Chan, Z. Liu, Q. Miao, Org. Mater. 2020, 2, 248–252.
- 21Z. Xia, S. H. Pun, H. Chen, Q. Miao, Angew. Chem. Int. Ed. 2021, 60, 10311–10318; Angew. Chem. 2021, 133, 10399–10406.
- 22Z. Qiu, C.-W. Ju, L. Frédéric, Y. Hu, D. Schollmeyer, G. Pieters, K. Müllen, A. Narita, J. Am. Chem. Soc. 2021, 143, 4661–4667.
- 23M. M. Hossain, K. Thakur, M. R. Talipov, S. V. Lindeman, S. Mirzaei, R. Rathore, Org. Lett. 2021, 23, 5170–5174.
- 24M. Zhao, S. H. Pun, Q. Gong, Q. Miao, Angew. Chem. Int. Ed. 2021, 60, 24124–24130; Angew. Chem. 2021, 133, 24326–24332.
- 25Y. Hu, X.-Y. Wang, P.-X. Peng, X.-C. Wang, X.-Y. Cao, X. Feng, K. Müllen, A. Narita, Angew. Chem. Int. Ed. 2017, 56, 3374–3378; Angew. Chem. 2017, 129, 3423–3427.
- 26Y. Avlasevich, C. Kohl, K. Müllen, J. Mater. Chem. 2006, 16, 1053–1057.
- 27Y. Zou, Y. Han, S. Wu, X. Hou, C. H. E. Chow, J. Wu, Angew. Chem. Int. Ed. 2021, 60, 17654–17663; Angew. Chem. 2021, 133, 17795–17804.
- 28B. T. King, J. Kroulik, C. R. Robertson, P. Rempala, C. L. Hilton, J. D. Korinek, L. M. Gortari, J. Org. Chem. 2007, 72, 2279–2288.
- 29D. N. Coventry, A. S. Batsanov, A. E. Goeta, J. A. K. Howard, T. B. Marder, R. N. Perutz, Chem. Commun. 2005, 2172–2174.
- 30Y. Zhu, Z. Xia, Z. Cai, Z. Yuan, N. Jiang, T. Li, Y. Wang, X. Guo, Z. Li, S. Ma, D. Zhong, Y. Li, J. Wang, J. Am. Chem. Soc. 2018, 140, 4222–4226.
- 31Z. Sun, C. Yi, Q. Liang, C. Bingi, W. Zhu, P. Qiang, D. Wu, F. Zhang, Org. Lett. 2020, 22, 209–213.
- 32Y. Sun, T. Yang, C. Chen, B. Yang, Y. Yang, J. Li, H. Sun, J. Wei, Org. Lett. 2021, 23, 5616–5620.
- 33L. Zhai, R. Shukla, R. Rathore, Org. Lett. 2009, 11, 3474–3477.
- 34C. Shen, G. Zhang, Y. Ding, N. Yang, F. Gan, J. Crassous, H. Qiu, Nat. Commun. 2021, 12, 2786.
- 35Q. Miao, Nat. Rev. Chem. 2021, 5, 602–603.
- 36Y. Zhu, X. Guo, Y. Li, J. Wang, J. Am. Chem. Soc. 2019, 141, 5511–5517.
- 37F. Zhang, E. Michail, F. Saal, A.-M. Krause, P. Ravat, Chem. Eur. J. 2019, 25, 16241–16245.
- 38M. Roy, V. Berezhnaia, M. Villa, N. Vanthuyne, M. Giorgi, J.-V. Naubron, S. Poyer, V. Monnier, L. Charles, Y. Carissan, D. Hagebaum-Reignier, J. Rodriguez, M. Gingras, Y. Coquerel, Angew. Chem. Int. Ed. 2020, 59, 3264–3271; Angew. Chem. 2020, 132, 3290–3297.
- 39E. V. Anslyn, D. A. Dougherty, Modern Physical Organic Chemistry, University Science, Sausalito, CA, 2004, chap. 7.
- 40For a recent example of chemical oxidation of curved polycyclic aromatics and crystallization of the dications, see: C. Zhu, K. Shoyama, F. Würthner, Angew. Chem. Int. Ed. 2020, 59, 21505–21509; Angew. Chem. 2020, 132, 21689–21693.
- 41N. G. Connelly, W. E. Geiger, Chem. Rev. 1996, 96, 877–910.
- 42Deposition numbers 2111210 and 2111211 contain the supplementary crystallographic data for [12+(SbCl6−)2]⋅(CH2Cl2)6 and 2, respectively. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 43Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, Chem. Rev. 2005, 105, 3842–3888.
- 44For examples of using NICS(0) to evaluate local aromaticity of curved polycyclic aromatics, see:
- 44aK. Y. Cheung, K. Watanabe, Y. Segawa, K. Itami, Nat. Chem. 2021, 13, 255–259;
- 44bRef. [36].
- 45G. Portella, J. Poater, J. M. Bofill, P. Alemany, M. Solà, J. Org. Chem. 2005, 70, 2509–2521.
- 46A. Stanger, Eur. J. Org. Chem. 2020, 3120–3127.
- 47An alternative way to evaluate the local aromaticity of contorted polycyclic aromatics is the recently reported 3D isotropic magnetic shielding (IMS) contour map, which can visualize the difference in delocalization patterns between the two faces of the electron circuits in contorted polycyclic aromatics. See: A. Artigas, D. Hagebaum-Reignier, Y. Carissan, Y. Coquerel, Chem. Sci. 2021, 12, 13092–13100.
- 48H. Shiba, G. Hazato, Bull. Chem. Soc. Jpn. 1949, 22, 92–96.
- 49J. A. N. F. Gomes, R. B. Mallion, Chem. Rev. 2001, 101, 1349–1383.
- 50J. Kruszewski, T. M. Krygowski, Tetrahedron Lett. 1972, 13, 3839–3842.
- 51T. M. Krygowski, J. Chem. Inf. Comput. Sci. 1993, 33, 70–78.
- 52T. M. Krygowski, M. K. Cyrański, Chem. Rev. 2001, 101, 1385–1420.
- 53S. Ma, J. Gu, C. Lin, Z. Luo, Y. Zhu, J. Wang, J. Am. Chem. Soc. 2020, 142, 16887–16893.
- 54G. Liu, T. Koch, Y. Li, N. L. Doltsinis, Z. Wang, Angew. Chem. Int. Ed. 2019, 58, 178–183; Angew. Chem. 2019, 131, 184–189.
- 55Y. Wang, Z. Yin, Y. Zhu, J. Gu, Y. Li, J. Wang, Angew. Chem. Int. Ed. 2019, 58, 587–591; Angew. Chem. 2019, 131, 597–601.
- 56X. Guo, Z. Yuan, Y. Zhu, Z. Li, R. Huang, Z. Xia, W. Zhang, Y. Li, J. Wang, Angew. Chem. Int. Ed. 2019, 58, 16966–16972; Angew. Chem. 2019, 131, 17122–17128.
- 57D. Shirotani, H. Sato, K. Yamanari, S. Kaizaki, Dalton Trans. 2012, 41, 10557–10567.
- 58T. Fujikawa, Y. Segawa, K. Itami, J. Am. Chem. Soc. 2016, 138, 3587–3595.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.