Enhanced Selectivity and Stability of Finned Ferrierite Catalysts in Butene Isomerization
Dr. Heng Dai
Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204 USA
Search for more papers by this authorChoongsze Lee
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455 USA
Search for more papers by this authorWen Liu
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian, 116023 China
Search for more papers by this authorDr. Taimin Yang
Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
Search for more papers by this authorJakob Claret
Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204 USA
Search for more papers by this authorProf. Xiaodong Zou
Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
Search for more papers by this authorCorresponding Author
Prof. Paul J. Dauenhauer
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455 USA
Search for more papers by this authorCorresponding Author
Prof. Xiujie Li
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian, 116023 China
Search for more papers by this authorCorresponding Author
Prof. Jeffrey D. Rimer
Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204 USA
Search for more papers by this authorDr. Heng Dai
Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204 USA
Search for more papers by this authorChoongsze Lee
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455 USA
Search for more papers by this authorWen Liu
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian, 116023 China
Search for more papers by this authorDr. Taimin Yang
Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
Search for more papers by this authorJakob Claret
Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204 USA
Search for more papers by this authorProf. Xiaodong Zou
Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
Search for more papers by this authorCorresponding Author
Prof. Paul J. Dauenhauer
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455 USA
Search for more papers by this authorCorresponding Author
Prof. Xiujie Li
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian, 116023 China
Search for more papers by this authorCorresponding Author
Prof. Jeffrey D. Rimer
Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204 USA
Search for more papers by this authorAbstract
Designing zeolite catalysts with improved mass transport properties is crucial for restrictive networks of either one- or two-dimensional pore topologies. Here, we demonstrate the synthesis of finned ferrierite (FER), a commercial zeolite with two-dimensional pores, where protrusions on crystal surfaces behave as pseudo nanoparticles. Catalytic tests of 1-butene isomerization reveal a 3-fold enhancement of catalyst lifetime and an increase of 12 % selectivity to isobutene for finned samples compared to corresponding seeds. Electron tomography was used to confirm the identical crystallographic registry of fins and seeds. Time-resolved titration of Brønsted acid sites confirmed the improved mass transport properties of finned ferrierite compared to conventional analogues. These findings highlight the advantages of introducing fins through facile and tunable post-synthesis modification to impart material properties that are otherwise unattainable by conventional synthesis methods.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202113077-sup-0001-misc_information.pdf5.3 MB | Supporting Information |
ange202113077-sup-0001-Movie_S1.mp418.2 MB | Supporting Information |
ange202113077-sup-0001-Movie_S1_AK.mp43.4 MB | Supporting Information |
ange202113077-sup-0001-Movie_S2.avi29.2 MB | Supporting Information |
ange202113077-sup-0001-Movie_S2_AK.mp418.2 MB | Supporting Information |
ange202113077-sup-0001-Movie_S3.avi18.5 MB | Supporting Information |
ange202113077-sup-0001-Movie_S3_AK.avi29.2 MB | Supporting Information |
ange202113077-sup-0001-Movie_S4.mp43.4 MB | Supporting Information |
ange202113077-sup-0001-Movie_S4_AK.avi18.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aK. Varoon, X. Zhang, B. Elyassi, D. D. Brewer, M. Gettel, S. Kumar, J. A. Lee, S. Maheshwari, A. Mittal, C. Y. Sung et al. Science 2011, 334, 72–75;
- 1bK. A. Cychosz, R. Guillet-Nicolas, J. García-Martínez, M. Thommes, Chem. Soc. Rev. 2017, 46, 389–414;
- 1cJ. Li, A. Corma, J. Yu, Chem. Soc. Rev. 2015, 44, 7112–7127;
- 1dD. J. Rimer, Nat. Catal. 2018, 1, 488–489;
- 1eE. M. Gallego, M. T. Portilla, C. Paris, A. León-Escamilla, M. Boronat, M. Moliner, A. Corma, Science 2017, 355, 1051–1054;
- 1fN. Rangnekar, N. Mittal, B. Elyassi, J. Caro, M. Tsapatsis, Chem. Soc. Rev. 2015, 44, 7128–7154;
- 1gC. Martínez, A. Corma, Coord. Chem. Rev. 2011, 255, 1558–1580;
- 1hM. E. Davis, Nature 2002, 417, 813–821;
- 1iI. Yarulina, A. D. Chowdhury, F. Meirer, B. M. Weckhuysen, J. Gascon, Nat. Catal. 2018, 1, 398–411.
- 2
- 2aM. Choi, K. Na, J. Kim, Y. Sakamoto, O. Terasaki, R. Ryoo, Nature 2009, 461, 246–249;
- 2bJ. Přech, P. Pizarro, D. P. Serrano, J. Áejka, Chem. Soc. Rev. 2018, 47, 8263–8306;
- 2cM. T. Yuan, D. Y. Zhao, Q. Q. Hao, Q. X. Luo, J. Zhang, H. Chen, M. Sun, L. Xu, X. Ma, Ind. Eng. Chem. Res. 2020, 59, 16312–16320;
- 2dL. Xu, P. Wu, New J. Chem. 2016, 40, 3968–3981;
- 2eW. J. Roth, P. Nachtigall, R. E. Morris, J. Čejka, Chem. Rev. 2014, 114, 4807–4837;
- 2fY. Zhou, Y. Mu, M. F. Hsieh, B. Kabius, C. Pacheco, C. Bator, R. M. Rioux, J. D. Rimer, J. Am. Chem. Soc. 2020, 142, 8211–8222.
- 3
- 3aX. Zhang, D. Liu, D. Xu, S. Asahina, K. A. Cychosz, K. V. Agrawal, Y. Al Wahedi, A. Bhan, S. Al Hashimi, O. Terasaki, Science 2012, 336, 1684–1687;
- 3bP. Lu, S. Ghosh, M. Dorneles de Mello, H. S. Kamaluddin, X. Li, G. Kumar, X. Duan, M. Abeykoon, J. A. Boscoboinik, L. Qi, Angew. Chem. Int. Ed. 2021, 60, 19214–19221; Angew. Chem. 2021, 133, 19363–19370;
- 3cL. Ren, Q. Guo, P. Kumar, M. Orazov, D. Xu, S. M. Alhassan, K. A. Mkhoyan, M. E. Davis, M. Tsapatsis, Angew. Chem. Int. Ed. 2015, 54, 10848–10851; Angew. Chem. 2015, 127, 10998–11001.
- 4
- 4aK. Li, J. Valla, J. Garcia-Martinez, ChemCatChem 2014, 6, 46–66;
- 4bK. Zhang, M. L. Ostraat, Catal. Today 2016, 264, 3–15;
- 4cJ. Pérez-Ramírez, C. H. Christensen, K. Egeblad, C. H. Christensen, J. C. Groen, Chem. Soc. Rev. 2008, 37, 2530–2542;
- 4dE. Koohsaryan, M. Anbia, Chin. J. Catal. 2016, 37, 447–467;
- 4eW. Schwieger, A. G. Machoke, T. Weissenberger, A. Inayat, T. Selvam, M. Klumpp, A. Inayat, Chem. Soc. Rev. 2016, 45, 3353–3376.
- 5
- 5aV. Valtchev, L. Tosheva, Chem. Rev. 2013, 113, 6734–6760;
- 5bS. Mintova, M. Jaber, V. Valtchev, Chem. Soc. Rev. 2015, 44, 7207–7233;
- 5cS. Mintova, J. P. Gilson, V. Valtchev, Nanoscale 2013, 5, 6693–6703;
- 5dH. Awala, J. P. Gilson, R. Retoux, P. Boullay, J. M. Goupil, V. Valtchev, S. Mintova, Nat. Mater. 2015, 14, 447–451;
- 5eI. Schmidt, C. Madsen, C. J. H. Jacobsen, Inorg. Chem. 2000, 39, 2279–2283.
- 6
- 6aO. Muraza, Ind. Eng. Chem. Res. 2015, 54, 781–789;
- 6bO. Muraza, I. A. Bakare, T. Tago, H. Konno, T. Taniguchi, A. M. Al-Amer, Z. H. Yamani, Y. Nakasaka, T. Masuda, Fuel 2014, 135, 105–111;
- 6cM. H. M. Ahmed, O. Muraza, A. M. Al-Amer, K. Miyake, N. Nishiyama, Appl. Catal. A 2015, 497, 127–134.
- 7
- 7aS. S. Hassani, F. Salehirad, H. R. Aghabozorg, Z. Sobat, Cryst. Res. Technol. 2010, 45, 183–187;
- 7bR. Li, N. Linares, J. G. Sutjianto, A. Chawla, J. Garcia-Martinez, J. D. Rimer, Angew. Chem. Int. Ed. 2018, 57, 11283–11288; Angew. Chem. 2018, 130, 11453–11458;
- 7cM. Kumar, Z. J. Berkson, R. J. Clark, Y. Shen, N. A. Prisco, Q. Zheng, Z. Zeng, H. Zheng, L. B. McCusker, J. C. Palmer et al. J. Am. Chem. Soc. 2019, 141, 20155–20165.
- 8
- 8aW. J. Roth, C. T. Kresge, J. C. Vartuli, M. E. Leonowicz, A. S. Fung, S. B. McCullen, Stud. Surf. Sci. Catal. 1995, 94, 301–308;
- 8bA. Corma, C. Corell, J. Pérez-Pariente, Zeolites 1995, 15, 2–8;
- 8cL. Schreyeck, P. Caullet, J. C. Mougenel, J. L. Guth, B. Marler, Microporous Mater. 1996, 6, 259–271.
- 9
- 9aP. Kumar, K. V. Agrawal, M. Tsapatsis, K. A. Mkhoyan, Nat. Commun. 2015, 6, 7128;
- 9bP. Wuamprakhon, C. Wattanakit, C. Warakulwit, T. Yutthalekha, W. Wannapakdee, S. Ittisanronnachai, J. Limtrakul, Microporous Mesoporous Mater. 2016, 219, 1–9;
- 9cM. V. Opanasenko, W. J. Roth, J. Čejka, Catal. Sci. Technol. 2016, 6, 2467–2484.
- 10
- 10aH. Xu, W. Chen, G. Zhang, P. Wei, Q. Wu, L. Zhu, X. Meng, X. Li, J. Fei, S. Han et al. J. Mater. Chem. A 2019, 7, 16671–16676;
- 10bW. Chu, X. Li, X. Zhu, S. Xie, C. Guo, S. Liu, F. Chen, L. Xu, Microporous Mesoporous Mater. 2017, 240, 189–196;
- 10cW. Chu, F. Chen, C. Guo, X. Li, X. Zhu, Y. Gao, S. Xie, S. Liu, N. Jiang, L. Xu, Chin. J. Catal. 2017, 38, 1880–1887;
- 10dY. Lee, M. B. Park, P. S. Kim, A. Vicente, C. Fernandez, I. S. Nam, S. B. Hong, ACS Catal. 2013, 3, 617–621;
- 10eW. Dai, V. Ruaux, X. Deng, W. Tai, G. Wu, N. Guan, L. Li, V. Valtchev, J. Mater. Chem. A 2021, 9, 24922–24931;
- 10fY. P. Khitev, I. I. Ivanova, Y. G. Kolyagin, O. A. Ponomareva, Appl. Catal. A 2012, 441, 124–135.
- 11
- 11aC. L. Kibby, A. J. Perrotta, F. E. Massoth, J. Catal. 1974, 35, 256–272;
- 11bJ. Liu, H. Xue, X. Huang, Y. Li, W. Shen, Catal. Lett. 2010, 139, 33–37;
- 11cV. J. Margarit, M. R. Díaz-Rey, M. T. Navarro, C. Martínez, A. Corma, Angew. Chem. Int. Ed. 2018, 57, 3459–3463; Angew. Chem. 2018, 130, 3517–3521;
- 11dH. Xu, J. Zhu, L. Zhu, E. Zhou, C. Shen, Molecules 2020, 25, 3722;
- 11eZ. Zhao, W. Zhang, P. Ren, X. Han, U. Müller, B. Yilmaz, M. Feyen, H. Gies, F. Xiao, D. D. Vos, T. Tatsumi, X. Bao, Chem. Mater. 2013, 25, 840–847.
- 12L. Qi, J. Li, L. Xu, Z. Liu, RSC Adv. 2016, 6, 56698–56704.
- 13A. Corma, U. Diaz, M. E. Domine, V. Fornés, Angew. Chem. Int. Ed. 2000, 39, 1499–1501;
10.1002/(SICI)1521-3773(20000417)39:8<1499::AID-ANIE1499>3.0.CO;2-0 CAS PubMed Web of Science® Google ScholarAngew. Chem. 2000, 112, 1559–1561.
- 14
- 14aA. Bonilla, D. Baudouin, J. Pérez-Ramírez, J. Catal. 2009, 265, 170–180;
- 14bE. Catizzone, M. Migliori, A. Aloise, R. Lamberti, G. Giordano, J. Chem. 2019, 2019, 3084356.
- 15
- 15aH. Dai, Y. Shen, T. Yang, C. Lee, D. Fu, A. Agarwal, T. T. Le, M. Tsapatsis, J. C. Palmer, B. M. Weckhuysen et al. Nat. Mater. 2020, 19, 1074–1080;
- 15bB. Xie, J. Song, L. Ren, Y. Ji, J. Li, F. Xiao, Chem. Mater. 2008, 20, 4533–4535;
- 15cH. Zhang, L. Wang, D. Zhang, X. Meng, F. Xiao, Microporous Mesoporous Mater. 2016, 233, 133–139.
- 16
- 16aN. Danilina, F. Krumeich, S. A. Castelanelli, J. A. Van Bokhoven, J. Phys. Chem. C 2010, 114, 6640–6645;
- 16bW. Qin, Y. Zhou, J. D. Rimer, React. Chem. Eng. 2019, 4, 1957–1968;
- 16cJ. Dwyer, F. R. Fitch, G. Qin, J. C. Vickerman, J. Phys. Chem. 1982, 86, 4574–4578.
- 17P. A. Vaughan, Acta Crystallogr. 1966, 21, 983–990.
- 18Y. Shen, T. T. Le, D. Fu, J. E. Schmidt, M. Filez, B. M. Weckhuysen, J. D. Rimer, ACS Catal. 2018, 8, 11042–11053.
- 19S. Bordiga, C. Lamberti, F. Bonino, A. Travert, F. Thibault-Starzyk, Chem. Soc. Rev. 2015, 44, 7262–7341.
- 20
- 20aA. A. Gabrienko, I. G. Danilova, S. S. Arzumanov, L. V. Pirutko, D. Freude, A. G. Stepanov, J. Phys. Chem. C 2018, 122, 25386–25395;
- 20bC. Schroeder, V. Siozios, M. Hunger, M. R. Hansen, H. Koller, J. Phys. Chem. C 2020, 124, 23380–23386;
- 20cS. Zeng, J. Li, N. Wang, W. Zhang, Y. Wei, Z. Liu, S. Xu, Energy Fuels 2021, 35, 12319-12328.
- 21M. Ravi, V. L. Sushkevich, J. A. van Bokhoven, Nat. Mater. 2020, 19, 1047–1056.
- 22D. Jo, S. B. Hong, M. A. Camblor, ACS Catal. 2015, 5, 2270–2274.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.