Synthesis, Aromaticity, and Application of peri-Pentacenopentacene: Localized Representation of Benzenoid Aromatic Compounds
Dr. Tanguy Jousselin-Oba
Institut Lavoisier de Versailles, UMR CNRS 8180, University Paris-Saclay, 45 avenue des Etats-Unis, 78035 Versailles Cedex, France
Search for more papers by this authorCorresponding Author
Dr. Masashi Mamada
Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Nishi, Fukuoka, 819-0395 Japan
Search for more papers by this authorDr. Karen Wright
Institut Lavoisier de Versailles, UMR CNRS 8180, University Paris-Saclay, 45 avenue des Etats-Unis, 78035 Versailles Cedex, France
Search for more papers by this authorDr. Jérome Marrot
Institut Lavoisier de Versailles, UMR CNRS 8180, University Paris-Saclay, 45 avenue des Etats-Unis, 78035 Versailles Cedex, France
Search for more papers by this authorProf. Chihaya Adachi
Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Nishi, Fukuoka, 819-0395 Japan
International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, Nishi, Fukuoka, 819-0395 Japan
Search for more papers by this authorDr. Abderrahim Yassar
LPICM, UMR CNRS 7647, Ecole Polytechnique, 91128 Palaiseau Cedex, France
Search for more papers by this authorCorresponding Author
Dr. Michel Frigoli
Institut Lavoisier de Versailles, UMR CNRS 8180, University Paris-Saclay, 45 avenue des Etats-Unis, 78035 Versailles Cedex, France
Search for more papers by this authorDr. Tanguy Jousselin-Oba
Institut Lavoisier de Versailles, UMR CNRS 8180, University Paris-Saclay, 45 avenue des Etats-Unis, 78035 Versailles Cedex, France
Search for more papers by this authorCorresponding Author
Dr. Masashi Mamada
Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Nishi, Fukuoka, 819-0395 Japan
Search for more papers by this authorDr. Karen Wright
Institut Lavoisier de Versailles, UMR CNRS 8180, University Paris-Saclay, 45 avenue des Etats-Unis, 78035 Versailles Cedex, France
Search for more papers by this authorDr. Jérome Marrot
Institut Lavoisier de Versailles, UMR CNRS 8180, University Paris-Saclay, 45 avenue des Etats-Unis, 78035 Versailles Cedex, France
Search for more papers by this authorProf. Chihaya Adachi
Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Nishi, Fukuoka, 819-0395 Japan
International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, Nishi, Fukuoka, 819-0395 Japan
Search for more papers by this authorDr. Abderrahim Yassar
LPICM, UMR CNRS 7647, Ecole Polytechnique, 91128 Palaiseau Cedex, France
Search for more papers by this authorCorresponding Author
Dr. Michel Frigoli
Institut Lavoisier de Versailles, UMR CNRS 8180, University Paris-Saclay, 45 avenue des Etats-Unis, 78035 Versailles Cedex, France
Search for more papers by this authorIn memory of Professor François Couty
Abstract
We report the synthesis and optoelectronic properties of TIPS-peri-pentacenopentacene (TIPS-PPP), a vertical extension of TIPS-pentacene (TIPS-PEN) and a low-band-gap material with remarkable stability. We found the synthetic conditions to avoid the competition between 1,2- and 1,4-addition of lithium acetylide on the large aromatic dione. The high stability of TIPS-PPP is due to the peri-fusion which increases the aromaticity by generating two localized aromatic sextets that are flanked with 2 diene fragments, similar to two fused-anthracenes. Like TIPS-PEN, TIPS-PPP shows the archetypal 2D brickwall motif in crystals with a larger transfer integral and smaller reorganization energy. The high mobility of up to 1 cm2 V−1 s−1 was obtained in an organic field-effect transistor fabricated by a wet process. Also, TIPS-PPP was used as a near-infrared (NIR) emitter for NIR organic-light-emitting-diode devices resulting in a high external quantum efficiency at 800 nm.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202112794-sup-0001-misc_information.pdf2.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aM. Bendikov, F. Wudl, D. F. Perepichka, Chem. Rev. 2004, 104, 4891–4946;
- 1bJ. E. Anthony, Angew. Chem. Int. Ed. 2008, 47, 452–483; Angew. Chem. 2008, 120, 460–492;
- 1cQ. Ye, C. Chi, Chem. Mater. 2014, 26, 4046–4056.
- 2H. Sirringhaus, Adv. Mater. 2014, 26, 1319–1335.
- 3J. Roncali, P. Leriche, P. Blanchard, Adv. Mater. 2014, 26, 3821–3838.
- 4
- 4aJ. Mei, Y. Diao, A. L. Appleton, L. Fang, Z. Bao, J. Am. Chem. Soc. 2013, 135, 6724–6746;
- 4bG. Schweicher, G. Garbay, R. Jouclas, F. Vibert, F. Devaux, Y. H. Geerts, Adv. Mater. 2020, 32, 1905909.
- 5Y.-Y. Lin, D. I. Gundlach, S. F. Nelson, T. N. Jackson, IEEE Trans. Electron Devices Lett. 1997, 44, 1325–1331.
- 6Article mentioned for the X-ray structure: T. Siegrist, C. Kloc, J. H. Schon, B. Batlogg, R. C. Haddon, S. Berg, G. A. Thomas, Angew. Chem. Int. Ed. 2001, 40, 1732–1736;
10.1002/1521-3773(20010504)40:9<1732::AID-ANIE17320>3.0.CO;2-7 CAS PubMed Web of Science® Google ScholarAngew. Chem. 2001, 113, 1782–1786.
- 7P. T. Herwig, K. Müllen, Adv. Mater. 1999, 11, 480–483.
- 8J. E. Anthony, J. S. Brooks, D. L. Eaton, S. R. Parkin, J. Am. Chem. Soc. 2001, 123, 9482–9483.
- 9A. Maliakal, K. Raghavachari, H. Katz, E. Chandross, T. Siegrist, Chem. Mater. 2004, 16, 4980–4986.
- 10W.-Q. Deng, W. A. Goddard, J. Phys. Chem. B 2004, 108, 8614.
- 11J.-L. Brédas, D. Beljonne, V. Coropceanu, J. Cornil, Chem. Rev. 2004, 104, 4971–5003.
- 12J. E. Anthony, Isr. J. Chem. 2014, 54, 642–649.
- 13B. Purushothaman, S. R. Parkin, J. E. Anthony, Org. Lett. 2010, 12, 2060–2063.
- 14M. Bendikov, H. M. Duong, K. Starkey, K. N. Houk, E. A. Carter, F. Wudl, J. Am. Chem. Soc. 2004, 126, 7416–7417.
- 15Y. Yang, E. R. Davidson, W. Yang, Proc. Natl. Acad. Sci. USA 2016, 113, E5098–E5107.
- 16L. Zhang, A. Fonari, Y. Liu, A.-L. M. Hoyt, H. Lee, D. Granger, S. Parkin, T. P. Russell, J. E. Anthony, J.-L. Brédas, V. Coropceanu, A. L. Briseno, J. Am. Chem. Soc. 2014, 136, 9248–9251.
- 17X. Liu, M. Chen, C. Xiao, N. Xue, L. Zhang, Org. Lett. 2018, 20, 4512–4515.
- 18Z. Wang, R. Li, Y. Chen, Y.-Z. Tan, Z. Tu, X. J. Gao, H. Dong, Y. Yi, Y. Zhang, W. Hu, K. Müllen, L. Chen, J. Mater. Chem. C 2017, 5, 1308–1312.
- 19
- 19aK. Sbargoud, M. Mamada, T. Jousselin-Oba, Y. Takeda, S. Tokito, A. Yassar, J. Marrot, M. Frigoli, Chem. Eur. J. 2017, 23, 5076–5080;
- 19bT. Jousselin-Oba, M. Mamada, J. Marrot, A. Maignan, C. Adachi, A. Yassar, M. Frigoli, J. Am. Chem. Soc. 2019, 141, 9373–9381.
- 20S. Thomas, J. Ly, L. Zhang, A. L. Briseno, J.-L. Brédas, Chem. Mater. 2016, 28, 8504–8512.
- 21M. Solà, Front. Chem. 2013, 1, 1–8.
- 22
- 22aP. v. R. Schleyer, M. Manoharan, H. Jiao, F. Stahl, Org. Lett. 2001, 3, 3643–3646;
- 22bR. Gershoni-Poranne, A. Stanger, Chem. Soc. Rev. 2015, 44, 6597–6615.
- 23
- 23aG. Portella, J. Poater, J. M. Bofill, P. Alemany, M. Solà, J. Org. Chem. 2005, 70, 2509–2521;
- 23bD. Yu, T. Stuyver, C. Rong, M. Alonso, T. Lu, F. De Proft, P. Geerlings, S. Liu, Phys. Chem. Chem. Phys. 2019, 21, 18195–18210.
- 24
- 24aC. H. Suresh, S. R. Gadre, J. Org. Chem. 1999, 64, 2505–2512;
- 24bK. Anjalikrishna, C. H. Suresh, S. R. Gadre, J. Phys. Chem. A 2019, 123, 10139–10151.
- 25M. Randić, A. T. Balaban, Int. J. Quantum Chem. 2018, 118, E25657.
- 26D. W. Szczepanik, M. Solà, T. M. Krygowski, H. Szatylowicz, M. Andrzejak, B. Pawelek, J. Dominikowska, M. Kukulka, K. Dyduch, Phys. Chem. Chem. Phys. 2018, 20, 13430–13436.
- 27L. Zhang, B. Walker, F. Liu, N. S. Colella, S. C. B. Mannsfeld, J. J. Watkins, T.-Q. Nguyen, A. L. Briseno, J. Mater. Chem. 2012, 22, 4266–4268.
- 28A. Zampetti, A. Minotto, F. Cacialli, Adv. Funct. Mater. 2019, 29, 1807623.
- 29J. L. Marshall, D. Lehnherr, B. D. Lindner, R. R. Tykwinski, ChemPlusChem 2017, 82, 967–1001.
- 30
- 30aC. Reus, M. P. Lechner, M. Schulze, D. Lungerich, C. Diner, M. Gruber, J. M. Stryker, F. Hampel, N. Jux, R. R. Tykwinski, Chem. Eur. J. 2016, 22, 9097–9101;
- 30bM. R. Rao, S. Johnson, D. F. Perepichka, Org. Lett. 2016, 18, 3574–3577;
- 30cZ. Wang, J. Li, S. Zhang, Q. Wang, G. Dai, B. Liu, X. Zhu, Z. Li, C. Kolodziej, C. McCleese, C. Burda, W. Sun, L. Chen, Chem. Eur. J. 2018, 24, 14442–14447.
- 31Y. Gu, Y. G. Tullimilli, J. Feng, H. Phan, W. Zeng, J. Wu, Chem. Commun. 2019, 55, 5567–5570.
- 32P. Demerseman, J. Einhorn, R. Royer, J.-F. O. Gourvest, J. Heterocycl. Chem. 1985, 22, 39–43.
- 33A. L. S. Thompson, G. W. Kabalka, M. R. Akula, J. W. Huffman, Synthesis 2005, 547–550.
- 34E. Weber, I. Csoregh, B. Stensland, M. Czugler, J. Am. Chem. Soc. 1984, 106, 3297–3306.
- 35T. Jousselin-Oba, K. Sbargoud, G. Vaccaro, F. Meinardi, A. Yassar, M. Frigoli, Chem. Eur. J. 2017, 23, 16184–16188.
- 36A. Krasovskiy, F. Kopp, P. Knochel, Angew. Chem. Int. Ed. 2006, 45, 497–500; Angew. Chem. 2006, 118, 511–515.
- 37P. Bultinck, Faraday Discuss. 2007, 135, 347–365.
- 38X. Shi, T. Y. Gopalakrishna, Q. Wang, C. Chi, Chem. Eur. J. 2017, 23, 8525–8531.
- 39
- 39aA. Shimizu, Y. Tobe, Angew. Chem. Int. Ed. 2011, 50, 6906–6910; Angew. Chem. 2011, 123, 7038–7042;
- 39bH. Miyoshi, S. Nobusue, A. Shimizu, I. Hisaki, M. Miyata, Y. Tobe, Chem. Sci. 2014, 5, 163–168.
- 40R. Herges, D. Geuenich, J. Phys. Chem. A 2001, 105, 3214–3220.
- 41R. Gershoni-Poranne, A. Stanger, Chem. Eur. J. 2014, 20, 5673–5688.
- 42Deposition Number 2107151 contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures.
- 43
- 43aR. Englman, J. Jortner, Mol. Phys. 1970, 18, 145–164;
- 43bJ. V. Caspar, T. J. Meyer, J. Phys. Chem. 1983, 87, 952–957.
- 44Y.-C. Wei, S. F. Wang, Y. Hu, L.-S. Liao, D.-G. Chen, K.-H. Chang, C.-W. Wang, S.-H. Liu, W.-H. Chan, J.-L. Liao, W.-Y. Hung, T.-H. Wang, P.-T. Chen, H.-F. Hsu, Y. Chi, P.-T. Chou, Nat. Photonics 2020, 14, 570–577.
- 45Y. Cao, Y. Liang, L. Zhang, S. Osuna, A.-L. M. Hoyt, A. L. Briseno, K. N. Houk, J. Am. Chem. Soc. 2014, 136, 10743–10751.
- 46D. Doehnert, J. Koutecky, J. Am. Chem. Soc. 1980, 102, 1789–1796.
- 47
- 47aT. Y. Gopalakrishna, W. Zeng, X. Lu, J. Wu, Chem. Commun. 2018, 54, 2186;
- 47bW. Zeng, J. Wu, Chem 2020, 7, 1–29.
- 48
- 48aD. Chun, Y. Cheng, F. Wudl, Angew. Chem. Int. Ed. 2008, 47, 8380–8385; Angew. Chem. 2008, 120, 8508–8513;
- 48bE. Qu, C. Chi, Org. Lett. 2010, 12, 3360–3363.
- 49
- 49aV. Coropceanu, J. Cornil, D. A. da Silva, Y. Olivier, R. Silbey, J.-L. Brédas, Chem. Rev. 2007, 107, 926–952;
- 49bR. A. Marcus, J. Chem. Phys. 1956, 24, 966–978.
- 50J. Kang, N. Shin, D. Y. Jang, V. M. Prabhu, D. Y. Yoon, J. Am. Chem. Soc. 2008, 130, 12273–12275.
- 51H. Nakanotani, T. Higuchi, T. Furukawa, K. Masui, K. Morimoto, M. Numata, H. Tanaka, Y. Sagara, T. Yasuda, C. Adachi, Nat. Commun. 2014, 5, 4016.
- 52
- 52aS. Wang, X. Yan, Z. Cheng, H. Zhang, Y. Liu, Y. Wang, Angew. Chem. Int. Ed. 2015, 54, 13068–13072; Angew. Chem. 2015, 127, 13260–13264;
- 52bT. Yamanaka, H. Nakanotani, S. Hara, T. Hirohata, C. Adachi, Appl. Phys. Express 2017, 10, 074101.
- 53J. Brodeur, L. Hu, A. Malinge, E. Eizner, W. G. Skene, S. Kéna-Cohen, Adv. Opt. Mater. 2019, 7, 1901144.
- 54
- 54aA. Zampetti, A. Minotto, F. Cacialli, Adv. Funct. Mater. 2019, 29, 1807623;
- 54bY. Yuan, Y. Hu, Y.-X. Zhang, J.-D. Lin, Y.-K. Wang, Z.-Q. Jiang, L.-S. Liao, S.-T. Lee, Adv. Funct. Mater. 2017, 27, 1700986.
- 55Y. Kage, S. Kang, S. Mori, M. Mamada, C. Adachi, D. Kim, H. Furuta, S. Shimizu, Chem. Eur. J. 2021, 27, 5259–5267.
- 56U. Balijapalli, R. Nagata, N. Yamada, H. Nakanotani, M. Tanaka, A. D'Aléo, V. Placide, M. Mamada, Y. Tsuchiya, C. Adachi, Angew. Chem. Int. Ed. 2021, 60, 8477–8482; Angew. Chem. 2021, 133, 8558–8563.
- 57J. Xue, Q. Liang, R. Wang, J. Hou, W. Li, Q. Peng, Z. Shuai, J. Qiao, Adv. Mater. 2019, 31, 1808242.
- 58C. Li, R. Duan, B. Liang, G. Han, S. Wang, K. Ye, Y. Liu, Y. Yi, Y. Wang, Angew. Chem. Int. Ed. 2017, 56, 11525–11529; Angew. Chem. 2017, 129, 11683–11687.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.