Mo3S132− Intercalated Layered Double Hydroxide: Highly Selective Removal of Heavy Metals and Simultaneous Reduction of Ag+ Ions to Metallic Ag0 Ribbons
Lixiao Yang
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875 China
These authors contributed equally to this work.
Search for more papers by this authorLinxia Xie
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875 China
These authors contributed equally to this work.
Search for more papers by this authorMenglin Chu
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875 China
These authors contributed equally to this work.
Search for more papers by this authorHui Wang
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875 China
Search for more papers by this authorCorresponding Author
Dr. Mengwei Yuan
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875 China
Search for more papers by this authorZihuan Yu
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875 China
Search for more papers by this authorChaonan Wang
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875 China
Search for more papers by this authorCorresponding Author
Prof. Huiqin Yao
School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004 China
Search for more papers by this authorDr. Saiful M. Islam
Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208 USA
Department of chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS, 39217 USA
Search for more papers by this authorDr. Keren Shi
State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021 China
Search for more papers by this authorProf. Dongpeng Yan
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875 China
Search for more papers by this authorCorresponding Author
Prof. Shulan Ma
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875 China
Search for more papers by this authorCorresponding Author
Prof. Mercouri G. Kanatzidis
Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208 USA
Search for more papers by this authorLixiao Yang
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875 China
These authors contributed equally to this work.
Search for more papers by this authorLinxia Xie
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875 China
These authors contributed equally to this work.
Search for more papers by this authorMenglin Chu
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875 China
These authors contributed equally to this work.
Search for more papers by this authorHui Wang
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875 China
Search for more papers by this authorCorresponding Author
Dr. Mengwei Yuan
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875 China
Search for more papers by this authorZihuan Yu
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875 China
Search for more papers by this authorChaonan Wang
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875 China
Search for more papers by this authorCorresponding Author
Prof. Huiqin Yao
School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004 China
Search for more papers by this authorDr. Saiful M. Islam
Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208 USA
Department of chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS, 39217 USA
Search for more papers by this authorDr. Keren Shi
State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021 China
Search for more papers by this authorProf. Dongpeng Yan
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875 China
Search for more papers by this authorCorresponding Author
Prof. Shulan Ma
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875 China
Search for more papers by this authorCorresponding Author
Prof. Mercouri G. Kanatzidis
Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208 USA
Search for more papers by this authorAbstract
We demonstrate a new material by intercalating Mo3S132− into Mg/Al layered double hydroxide (abbr. Mo3S13-LDH), exhibiting excellent capture capability for toxic Hg2+ and noble metal silver (Ag). The as-prepared Mo3S13-LDH displays ultra-high selectivity of Ag+, Hg2+ and Cu2+ in the presence of various competitive ions, with the order of Ag+>Hg2+>Cu2+>Pb2+≥Co2+, Ni2+, Zn2+, Cd2+. For Ag+ and Hg2+, extremely fast adsorption rates (≈90 % within 10 min, >99 % in 1 h) are observed. Much high selectivity is present for Ag+ and Cu2+, especially for trace amounts of Ag+ (≈1 ppm), achieving a large separation factor (SFAg/Cu) of ≈8000 at the large Cu/Ag ratio of 520. The overwhelming adsorption capacities for Ag+ (qmAg=1073 mg g−1) and Hg2+ (qmHg=594 mg g−1) place the Mo3S13-LDH at the top of performing sorbent materials. Most importantly, Mo3S13-LDH captures Ag+ via two paths: a) formation of Ag2S due to Ag-S complexation and precipitation, and b) reduction of Ag+ to metallic silver (Ag0). The Mo3S13-LDH is a promising material to extract low-grade silver from copper-rich minerals and trap highly toxic Hg2+ from polluted water.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202112511-sup-0001-misc_information.pdf435.2 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aV. Chandra, K. S. Kim, Chem. Commun. 2011, 47, 3942–3944;
- 1bH. Asiabi, Y. Yamini, M. Shamsayei, E. Tahmasebi, Chem. Eng. J. 2017, 323, 212–223;
- 1cR. Shawabkeh, A. Al-Harahsheh, A. Al-Otoom, Sep. Purif. Technol. 2004, 40, 251–257.
- 2
- 2aA. H. Alshehri, M. Jakubowska, A. Mlozniak, M. Horaczek, D. Rudka, C. Free, J. D. Carey, ACS Appl. Mater. Interfaces 2012, 4, 7007–7010;
- 2bW. B. Luo, X. W. Gao, S. L. Chou, J. Z. Wang, H. K. Liu, Adv. Mater. 2015, 27, 6862–6869;
- 2cJ. Lu, L. Cheng, K. C. Lau, E. Tyo, X. Luo, J. Wen, D. Miller, R. S. Assary, H. H. Wang, P. Redfern, H. Wu, J. B. Park, Y. K. Sun, S. Vajda, K. Amine, L. A. Curtiss, Nat. Commun. 2014, 5, 4895;
- 2dC. Wu, T. W. Kim, T. Guo, F. Li, Nano Energy 2017, 32, 367–373;
- 2eJ. Thiel, L. Pakstis, S. Buzby, M. Raffi, C. Ni, D. J. Pochan, S. I. Shah, Small 2007, 3, 799–803;
- 2fM. Liong, B. France, K. A. Bradley, J. I. Zink, Adv. Mater. 2009, 21, 1684–1689.
- 3P. Wang, N. W. Menzies, P. G. Dennis, J. Guo, C. Forstner, R. Sekine, E. Lombi, P. Kappen, P. M. Bertsch, P. M. Kopittke, Environ. Sci. Technol. 2016, 50, 8274–8281.
- 4S. J. Billinge, E. J. McKimmy, M. Shatnawi, H. Kim, V. Petkov, D. Wermeille, T. J. Pinnavaia, J. Am. Chem. Soc. 2005, 127, 8492–8498.
- 5M. J. Manos, N. Ding, M. G. Kanatzidis, Proc. Natl. Acad. Sci. USA 2008, 105, 3696–3699.
- 6M. J. Manos, M. G. Kanatzidis, J. Am. Chem. Soc. 2009, 131, 6599–6607.
- 7Z. Hassanzadeh Fard, C. D. Malliakas, J. L. Mertz, M. G. Kanatzidis, Chem. Mater. 2015, 27, 1925–1928.
- 8D. Sarma, C. D. Malliakas, K. S. Subrahmanyam, S. M. Islam, M. G. Kanatzidis, Chem. Sci. 2016, 7, 1121–1132.
- 9Z. Hassanzadeh Fard, S. M. Islam, M. G. Kanatzidis, Chem. Mater. 2015, 27, 6189–6192.
- 10J. Kibsgaard, T. F. Jaramillo, F. Besenbacher, Nat. Chem. 2014, 6, 248–253.
- 11M. Yuan, H. Yao, L. Xie, X. Liu, H. Wang, S. M. Islam, K. Shi, Z. Yu, G. Sun, H. Li, S. L. Ma, M. G. Kanatzidis, J. Am. Chem. Soc. 2020, 142, 1574–1583.
- 12
- 12aF. Chen, F. Hou, L. Huang, J. Cheng, H. Liu, P. Xi, D. Bai, Z. Zeng, Dyes Pigm. 2013, 98, 146–152;
- 12bX. Y. Xue, Q. Y. Gu, G. H. Pan, J. Liang, G. L. Huang, G. B. Sun, S. L. Ma, X. J. Yang, Inorg. Chem. 2014, 53, 1521–1529;
- 12cS. L. Ma, C. H. Fan, L. Du, G. L. Huang, X. J. Yang, W. P. Tang, Y. Makita, K. Ooi, Chem. Mater. 2009, 21, 3602–3610.
- 13
- 13aV. R. Constantino, T. J. Pinnavaia, Catal. Lett. 1994, 23, 361–367;
- 13bA. Corma, V. Fornes, F. Rey, A. Cervilla, E. Llopis, A. Ribera, J. Catal. 1995, 152, 237–242.
- 14Z. Gao, J. Wang, Z. Li, W. Yang, B. Wang, M. Hou, Y. He, Q. Liu, T. Mann, P. Yang, M. Zhang, L. Liu, Chem. Mater. 2011, 23, 3509–3516.
- 15A. I. Khan, D. O'Hare, J. Mater. Chem. 2002, 12, 3191–3198.
- 16
- 16aS. L. Ma, Q. Chen, H. Li, P. Wang, S. M. Islam, Q. Gu, X. Yang, M. G. Kanatzidis, J. Mater. Chem. A 2014, 2, 10280–10289;
- 16bS. L. Ma, L. Huang, L. Ma, Y. Shim, S. M. Islam, P. Wang, L. D. Zhao, S. Wang, G. Sun, X. Yang, M. G. Kanatzidis, J. Am. Chem. Soc. 2015, 137, 3670–3677.
- 17L. J. Ma, Q. Wang, S. M. Islam, Y. C. Liu, S. L. Ma, M. G. Kanatzidis, J. Am. Chem. Soc. 2016, 138, 2858–2866.
- 18L. Ma, S. M. Islam, H. Liu, J. Zhao, G. Sun, H. Li, S. L. Ma, M. G. Kanatzidis, Chem. Mater. 2017, 29, 3274–3284.
- 19L. Ma, S. Islam, C. Xiao, J. Zhao, H. Liu, M. Yuan, G. Sun, H. Li, S. Ma, M. G. Kanatzidis, J. Am. Chem. Soc. 2017, 139, 12745–12757.
- 20K. Vellingiri, K. H. Kim, A. Pournara, A. Deep, Prog. Mater. Sci. 2018, 94, 1–67.
- 21A. Müller, V. Wittneben, E. Krickemeyer, H. Bögge, M. Lemke, Z. Anorg. Allg. Chem. 1991, 605, 175–188.
- 22J. Lehto, A. Clearfield, J. Radioanal. Nucl. Chem. 1987, 118, 1–13.
- 23
- 23aW. Yantasee, C. L. Warner, T. Sangvanich, R. S. Addleman, T. G. Carter, R. J. Wiacek, G. E. Fryxell, C. Timchalk, M. G. Warner, Environ. Sci. Technol. 2007, 41, 5114–5119;
- 23bX. Chen, X. Feng, J. Liu, G. E. Fryxell, M. Gong, Sep. Sci. Technol. 1999, 34, 1121–1132.
- 24
- 24aL. X. Xie, Z. H. Yu, S. M. Islam, K. R. Shi, Y. H. Cheng, M. W. Yuan, J. Zhao, G. B. Sun, H. F. Li, S. L. Ma, M. G. Kanatzidis, Adv. Funct. Mater. 2018, 28, 1800502;
- 24bA. Jawad, Z. Liao, Z. Zhou, A. Khan, T. Wang, J. Ifthikar, A. Shahzad, Z. Chen, Z. Chen, ACS Appl. Mater. Interfaces 2017, 9, 28451–28463;
- 24cJ. J. Alcaraz-Espinoza, A. E. Chavez-Guajardo, J. C. Medina-Llamas, C. A. Andrade, C. P. de Melo, ACS Appl. Mater. Interfaces 2015, 7, 7231–7240;
- 24dM. J. Manos, M. G. Kanatzidis, Chem. Eur. J. 2009, 15, 4779–4784;
- 24eM. J. Manos, V. G. Petkov, M. G. Kanatzidis, Adv. Funct. Mater. 2009, 19, 1087–1092.
- 25T. Liu, M. Yang, T. Wang, Q. Yuan, Ind. Eng. Chem. Res. 2012, 51, 454–463.
- 26J. P. Simonin, Chem. Eng. J. 2016, 300, 254–263.
- 27Y. Ho, A. Ofomaja, J. Hazard. Mater. 2006, 129, 137–142.
- 28Y. S. Ho, G. McKay, Process Biochem. 1999, 34, 451–465.
- 29A. Celik, D. R. Baker, Z. Arslan, X. Zhu, A. Blanton, J. Nie, S. Yang, S. Ma, F. X. Han, S. M. Islam, Chem. Eng. J. 2021, 426, 131696.
- 30V. Rives, M. A. Ulibarri, Coord. Chem. Rev. 1999, 181, 61–120.
- 31P. Liu, J. Liu, S. Cheng, W. Cai, F. Yu, Y. Zhang, P. Wu, M. Liu, Chem. Eng. J. 2017, 328, 1–10.
- 32J. Ali, A. Shahzad, J. Wang, J. Ifthikar, W. Lei, G. G. Aregay, Z. Chen, Z. Chen, Chem. Eng. J. 2021, 408, 127242.
- 33Y. Yu, L. Lu, Q. Yang, A. Zupanic, Q. Xu, L. Jiang, ACS Appl. Nano Mater. 2021, 4, 7523–7537.
- 34J. Ali, L. Wenli, A. Shahzad, J. Ifthikar, G. G. Aregay, I. I. Shahib, Z. Elkhlifi, Z. Chen, Z. Chen, Water Res. 2020, 181, 115862.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.