A Universal Boronate-Affinity Crosslinking-Amplified Dynamic Light Scattering Immunoassay for Point-of-Care Glycoprotein Detection
Jing Chen
State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047 China
These authors contributed equally to this work.
Search for more papers by this authorLiangwen Hao
State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047 China
These authors contributed equally to this work.
Search for more papers by this authorJiaqi Hu
State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047 China
Search for more papers by this authorKang Zhu
State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047 China
Search for more papers by this authorYu Li
State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047 China
Search for more papers by this authorSicheng Xiong
State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xiaolin Huang
State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yonghua Xiong
State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047 China
Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, 330047 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Ben Zhong Tang
Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172 China
Search for more papers by this authorJing Chen
State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047 China
These authors contributed equally to this work.
Search for more papers by this authorLiangwen Hao
State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047 China
These authors contributed equally to this work.
Search for more papers by this authorJiaqi Hu
State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047 China
Search for more papers by this authorKang Zhu
State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047 China
Search for more papers by this authorYu Li
State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047 China
Search for more papers by this authorSicheng Xiong
State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xiaolin Huang
State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yonghua Xiong
State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047 China
Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, 330047 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Ben Zhong Tang
Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172 China
Search for more papers by this authorAbstract
Herein, we report a universal boronate-affinity crosslinking-amplified dynamic light scattering (DLS) immunoassay for point-of-care (POC) glycoprotein detection in complex samples. This enhanced DLS immunoassay consists of two elements, i.e., antibody-coated magnetic nanoparticles (MNP@mAb) for target capture and DLS signal transduction, and phenylboronic acid-based boronate-affinity materials as crosslinking amplifiers. Upon the addition of targets, glycoproteins are first captured by MNP@mAb and amplified by target-induced crosslinking stemming from the selective binding between the boronic acid ligand and cis-diol-containing glycoprotein, thereby resulting in a remarkably increased DLS signal in the average nanoparticle size. Benefiting from the multivalent binding and fast boronate-affinity reaction between glycoproteins and crosslinkers, the proposed immunosensing strategy has achieved the ultrasensitive and rapid quantitative assay of glycoproteins at the fM level within 15 min. Overall, this work provides a promising and versatile design strategy for extending the DLS technique to detect glycoproteins even in the field or at POC.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202112031-sup-0001-misc_information.pdf1.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aY. Wang, J. Nie, W. Fang, L. Yang, Q. Hu, Z. Wang, J. Z. Sun, B. Z. Tang, Chem. Rev. 2020, 120, 4534–4577;
- 1bC. Li, L. X. Wang, Chem. Rev. 2018, 118, 8359–8413;
- 1cK. W. Moremen, M. Tiemeyer, A. V. Nairn, Nat. Rev. Mol. Cell Biol. 2012, 13, 448–462;
- 1dK. Nomura, Y. Maki, R. Okamoto, A. Satoh, Y. Kajihara, J. Am. Chem. Soc. 2021, 143, 10157–10167;
- 1eS. Naghibi, T. Chen, A. Jamshidi Ghahfarokhi, Y. Tang, Aggregate 2021, 2, e41.
- 2
- 2aT. Zhou, Q. Wang, M. Liu, Z. Liu, Z. Zhu, X. Zhao, W. H. Zhu, Aggregate 2021, 2, e22;
- 2bC. Reily, T. J. Stewart, M. B. Renfrow, J. Novak, Nat. Rev. Nephrol. 2019, 15, 346–366;
- 2cK. Ohtsubo, J. D. Marth, Cell 2006, 126, 855–867.
- 3
- 3aM. Reindl, P. Waters, Nat. Rev. Nephrol. 2019, 15, 89–102;
- 3bD. Li, Y. Chen, Z. Liu, Chem. Soc. Rev. 2015, 44, 8097–8123.
- 4
- 4aY. Song, Y. Y. Huang, X. Liu, X. Zhang, M. Ferrari, L. Qin, Trends Biotechnol. 2014, 32, 132–139;
- 4bX. Huang, Z. He, D. Guo, Y. Liu, J. Song, B. C. Yung, L. Lin, G. Yu, J. J. Zhu, Y. Xiong, X. Chen, Theranostics 2018, 8, 3461–3473.
- 5
- 5aY. Xiong, Y. Leng, X. Li, X. Huang, Y. Xiong, TrAC Trends Anal. Chem. 2020, 126, 115861;
- 5bC. Hofmann, A. Duerkop, A. J. Baeumner, Angew. Chem. Int. Ed. 2019, 58, 12840–12860; Angew. Chem. 2019, 131, 12970–12992;
- 5cZ. Farka, M. J. Mickert, M. Pastucha, Z. Mikuová, P. Skládal, H. H. Gorris, Angew. Chem. Int. Ed. 2020, 59, 10746–10773; Angew. Chem. 2020, 132, 10836–10865.
- 6
- 6aC. Wu, P. M. Garden, D. R. Walt, J. Am. Chem. Soc. 2020, 142, 12314–12323;
- 6bL. Wu, G. Li, X. Xu, L. Zhu, R. Huang, X. Chen, TrAC Trends Anal. Chem. 2019, 113, 140–156;
- 6cH. Di, Z. Mi, Y. Sun, X. Liu, X. Liu, A. Li, Y. Jiang, H. Gao, P. Rong, D. Liu, Theranostics 2020, 10, 9303–9314.
- 7
- 7aY. Xiong, J. Zhang, Z. Yang, Q. Mou, Y. Ma, Y. Xiong, Y. Lu, J. Am. Chem. Soc. 2020, 142, 207–213;
- 7bX. Huang, Y. Zhou, L. Ding, G. Yu, Y. Leng, W. Lai, Y. Xiong, X. Chen, Small 2019, 15, 1903861;
- 7cP. Fozouni, S. Son, M. Diaz de Leon Derby, G. J. Knott, C. N. Gray, M. V. D′Ambrosio, C. Zhao, N. A. Switz, G. R. Kumar, S. I. Stephens, D. Boehm, C. L. Tsou, J. Shu, A. Bhuiya, M. Armstrong, A. R. Harris, P. Y. Chen, J. M. Osterloh, A. Meyer-Franke, B. Joehnk, K. Walcott, A. Sil, C. Langelier, K. S. Pollard, E. D. Crawford, A. S. Puschnik, M. Phelps, A. Kistler, J. L. DeRisi, J. A. Doudna, D. A. Fletcher, M. Ott, Cell 2021, 184, 323–333;
- 7dX. Chen, Y. Leng, L. Hao, H. Duan, J. Yuan, W. Zhang, X. Huang, Y. Xiong, Theranostics 2020, 10, 3737–3748;
- 7eY. Zhang, Q. Liu, C. B. Ma, Q. Wang, M. Yang, Y. Du, Theranostics 2020, 10, 5064–5073;
- 7fV. Turbé, C. Herbst, T. Mngomezulu, S. Meshkinfamfard, N. Dlamini, T. Mhlongo, T. Smit, V. Cherepanova, K. Shimada, J. Budd, N. Arsenov, S. Gray, D. Pillay, K. Herbst, M. Shahmanesh, R. A. McKendry, Nat. Med. 2021, 27, 1165–1170;
- 7gB. S. Miller, L. Bezinge, H. D. Gliddon, D. Huang, G. Dold, E. R. Gray, J. Heaney, P. J. Dobson, E. Nastouli, J. J. L. Morton, R. A. McKendry, Nature 2020, 587, 588–593;
- 7hX. Liu, W. Wu, D. Cui, X. Chen, W. Li, Adv. Mater. 2021, 33, 2004734.
- 8
- 8aG. Wang, M. Yu, G. Wang, Biosens. Bioelectron. 2019, 138, 111319;
- 8bL. Beqa, A. K. Singh, S. A. Khan, D. Senapati, S. R. Arumugam, P. C. Ray, ACS Appl. Mater. Interfaces 2011, 3, 668–673.
- 9
- 9aT. Zheng, N. Pierre-Pierre, X. Yan, Q. Huo, A. J. Almodovar, F. Valerio, I. Rivera-Ramirez, E. Griffith, D. D. Decker, S. Chen, N. Zhu, ACS Appl. Mater. Interfaces 2015, 7, 6819–6827;
- 9bX. Liu, Q. Dai, L. Austin, J. Coutts, G. Knowles, J. Zou, H. Chen, Q. Huo, J. Am. Chem. Soc. 2008, 130, 2780–2782.
- 10Y. Li, J. Yuan, S. Zhan, J. Hu, Y. Guo, L. Ding, X. Huang, Y. Xiong, Sens. Actuators B 2021, 341, 130030.
- 11S. Zhan, J. Hu, Y. Li, X. Huang, Y. Xiong, Food Chem. 2021, 342, 128327.
- 12J. R. Kalluri, T. Arbneshi, S. Afrin Khan, A. Neely, P. Candice, B. Varisli, M. Washington, S. McAfee, B. Robinson, S. Banerjee, A. K. Singh, D. Senapati, P. C. Ray, Angew. Chem. Int. Ed. 2009, 48, 9668–9671; Angew. Chem. 2009, 121, 9848–9851.
- 13X. Huang, Z. Xu, Y. Mao, Y. Ji, H. Xu, Y. Xiong, Y. Li, Biosens. Bioelectron. 2015, 66, 184–190.
- 14
- 14aH. Jans, Q. Huo, Chem. Soc. Rev. 2012, 41, 2849–2866;
- 14bR. Tian, Z. Wang, J. Liu, Q. Jiang, B. Ding, Aggregate 2021, 2, 133–144.
- 15
- 15aR. Xing, S. Wang, Z. Bie, H. He, Z. Liu, Nat. Protoc. 2017, 12, 964–987;
- 15bX. Wu, Z. Li, X. X. Chen, J. S. Fossey, T. D. James, Y. B. Jiang, Chem. Soc. Rev. 2013, 42, 8032–8048;
- 15cX. Sun, B. M. Chapin, P. Metola, B. Collins, B. Wang, T. D. James, E. V. Anslyn, Nat. Chem. 2019, 11, 768–778;
- 15dZ. Liu, H. He, Acc. Chem. Res. 2017, 50, 2185–2193;
- 15eH. Li, H. He, Z. Liu, TrAC Trends Anal. Chem. 2021, 140, 116271.
- 16
- 16aK. Yuan, Q. Mei, X. Guo, Y. Xu, D. Yang, B. J. Sanchez, B. Sheng, C. Liu, Z. Hu, G. Yu, H. Ma, H. Gao, C. Haisch, R. Niessner, Z. Jiang, Z. Jiang, H. Zhou, Chem. Sci. 2018, 9, 8781–8795;
- 16bJ. Chen, L. Hao, Y. Wu, T. Lin, X. Li, Y. Leng, X. Huang, Y. Xiong, Chem. Commun. 2019, 55, 10312–10315;
- 16cG. Chen, X. Kou, S. Huang, S. Huang, R. Zhang, C. Liu, J. Shen, F. Zhu, G. Ouyang, Adv. Funct. Mater. 2018, 28, 1804129.
- 17
- 17aL. Wu, A. C. Sedgwick, X. Sun, S. D. Bull, X. P. He, T. D. James, Acc. Chem. Res. 2019, 52, 2582–2597;
- 17bY. Huang, L. Zhu, J. Ji, Y. Li, T. Liu, J. Lei, Anal. Chem. 2020, 92, 4726–4730.
- 18
- 18aA. Stubelius, S. Lee, A. Almutairi, Acc. Chem. Res. 2019, 52, 3108–3119;
- 18bK. Okuro, M. Sasaki, T. Aida, J. Am. Chem. Soc. 2016, 138, 5527–5530.
- 19Y. Dong, W. Li, Z. Gu, R. Xing, Y. Ma, Q. Zhang, Z. Liu, Angew. Chem. Int. Ed. 2019, 58, 10621–10625; Angew. Chem. 2019, 131, 10731–10735.
- 20S. Wang, Y. Wen, Y. Wang, Y. Ma, Z. Liu, Anal. Chem. 2017, 89, 5646–5652.
- 21
- 21aJ. Ye, Y. Chen, Z. Liu, Angew. Chem. Int. Ed. 2014, 53, 10386–10389; Angew. Chem. 2014, 126, 10554–10557;
- 21bH. Wang, Y. Zhou, X. Jiang, B. Sun, Y. Zhu, H. Wang, Y. Su, Y. He, Angew. Chem. Int. Ed. 2015, 54, 5132–5136; Angew. Chem. 2015, 127, 5221–5225;
- 21cS. Xu, L. Wang, Z. Liu, Angew. Chem. Int. Ed. 2021, 60, 3858–3869; Angew. Chem. 2021, 133, 3902–3913;
- 21dZ. Gu, Y. Dong, S. Xu, L. Wang, Z. Liu, Angew. Chem. Int. Ed. 2021, 60, 2663–2667; Angew. Chem. 2021, 133, 2695–2699.
- 22C. Chun, J. Joo, D. Kwon, C. S. Kim, H. J. Cha, M.-S. Chung, S. Jeon, Chem. Commun. 2011, 47, 11047.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.