Bimetallic Copper/Ruthenium/Osmium Complexes: Observation of Conformational Differences Between the Solution Phase and Solid State by Atomic Pair Distribution Function Analysis
Dr. Zhu-Lin Xie
Division of Chemical Sciences and Engineering, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL, 60439 USA
Search for more papers by this authorXiaolin Liu
Department of Chemistry, University of Washington, 109 Bagley Hall, Seattle, WA, 98195-1700 USA
Search for more papers by this authorDr. Andrew J. S. Valentine
Department of Chemistry, University of Washington, 109 Bagley Hall, Seattle, WA, 98195-1700 USA
Search for more papers by this authorDr. Vincent M. Lynch
Department of Chemistry, University of Texas at Austin, 105 E 24TH ST., Austin, TX, 78712-1224 USA
Search for more papers by this authorDr. David M. Tiede
Division of Chemical Sciences and Engineering, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL, 60439 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Xiaosong Li
Department of Chemistry, University of Washington, 109 Bagley Hall, Seattle, WA, 98195-1700 USA
Search for more papers by this authorCorresponding Author
Dr. Karen L. Mulfort
Division of Chemical Sciences and Engineering, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL, 60439 USA
Search for more papers by this authorDr. Zhu-Lin Xie
Division of Chemical Sciences and Engineering, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL, 60439 USA
Search for more papers by this authorXiaolin Liu
Department of Chemistry, University of Washington, 109 Bagley Hall, Seattle, WA, 98195-1700 USA
Search for more papers by this authorDr. Andrew J. S. Valentine
Department of Chemistry, University of Washington, 109 Bagley Hall, Seattle, WA, 98195-1700 USA
Search for more papers by this authorDr. Vincent M. Lynch
Department of Chemistry, University of Texas at Austin, 105 E 24TH ST., Austin, TX, 78712-1224 USA
Search for more papers by this authorDr. David M. Tiede
Division of Chemical Sciences and Engineering, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL, 60439 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Xiaosong Li
Department of Chemistry, University of Washington, 109 Bagley Hall, Seattle, WA, 98195-1700 USA
Search for more papers by this authorCorresponding Author
Dr. Karen L. Mulfort
Division of Chemical Sciences and Engineering, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL, 60439 USA
Search for more papers by this authorAbstract
High-energy X-ray scattering and pair distribution function analysis (HEXS/PDF) is a powerful method to reveal the structure of materials lacking long-range order, but is underutilized for molecular complexes in solution. We demonstrate the application of HEXS/PDF with 0.26 Å resolution to uncover the solution structure of five bimetallic CuI/RuII/OsII complexes. HEXS/PDF of each complex in acetonitrile solution confirms the pairwise distances in the local coordination sphere of each metal center as well as the metal⋅⋅⋅metal distances separated by over 12 Å. The metal⋅⋅⋅metal distance detected in solution is compared with that from the crystal structure and molecular models to confirm that distortions to the metal bridging ligand are unique to the solid state. This work presents the first example of observing sub-Ångström conformational differences by direct comparison of solution phase and solid-state structures and shows the potential for HEXS/PDF in the determination of solution structure of single molecules.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202111764-sup-0001-misc_information.pdf8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1V. W. W. Yam, Photofunctional Transition Metal Complexes, Springer, Berlin, Heidelberg, 2007.
- 2F. E. Mabbs, D. J. Machin, Magnetism and Transition Metal Complexes, Dover Publications, 2008.
- 3J. R. Gispert, Coordination Chemistry, Wiley, Hoboken, 2008.
- 4D. M. Roundhill, Photochemistry and Photophysics of Metal Complexes, Springer US, 2013.
- 5K. K. W. Lo, Inorganic and Organometallic Transition Metal Complexes with Biological Molecules and Living Cells, Elsevier Science, Amsterdam, 2016.
- 6V. Petkov, in Charact. Mater., Wiley, Hoboken, 2012, pp. 1–14.
- 7D. M. Tiede, K. L. Mardis, X. Zuo, Photosynth. Res. 2009, 102, 267–279.
- 8A. Guinier, X-Ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies, Dover Publications, 1994.
- 9L. A. Feigin, D. I. Svergun, L. A. Feigin, D. I. Svergun, G. W. Taylor, in Struct. Anal. by Small-Angle X-Ray Neutron Scatt., Springer US, 1987, pp. 3–24.
- 10B. Chu, B. S. Hsiao, Chem. Rev. 2001, 101, 1727–1762.
- 11M. D. Foster, Crit. Rev. Anal. Chem. 1993, 24, 179–241.
- 12P. Du, O. Kokhan, K. W. Chapman, P. J. Chupas, D. M. Tiede, J. Am. Chem. Soc. 2012, 134, 11096–11099.
- 13J. Huang, J. D. Blakemore, D. Fazi, O. Kokhan, N. D. Schley, R. H. Crabtree, G. W. Brudvig, D. M. Tiede, Phys. Chem. Chem. Phys. 2014, 16, 1814–1819.
- 14A. S. Batchellor, G. Kwon, F. A. L. Laskowski, D. M. Tiede, S. W. Boettcher, J. Phys. Chem. C 2017, 121, 25421–25429.
- 15G. Kwon, H. Jang, J. S. Lee, A. Mane, D. J. Mandia, S. R. Soltau, L. M. Utschig, A. B. F. Martinson, D. M. Tiede, H. Kim, J. Kim, J. Am. Chem. Soc. 2018, 140, 10710–10720.
- 16X. He, R. Z. Waldman, D. J. Mandia, N. Jeon, N. J. Zaluzec, O. J. Borkiewicz, U. Ruett, S. B. Darling, A. B. F. Martinson, D. M. Tiede, ACS Nano 2020, 14, 14846–14860.
- 17D. M. Tiede, G. Kwon, X. He, K. L. Mulfort, A. B. F. Martinson, Nanoscale 2020, 12, 13276–13296.
- 18G. Kwon, O. Kokhan, A. Han, K. W. Chapman, P. J. Chupas, P. Du, D. M. Tiede, Acta Crystallogr. Sect. B 2015, 71, 713–721.
- 19X. Zuo, D. M. Tiede, J. Am. Chem. Soc. 2005, 127, 16–17.
- 20X. Zuo, G. Cui, K. M. Merz, L. Zhang, F. D. Lewis, D. M. Tiede, Proc. Natl. Acad. Sci. USA 2006, 103, 3534–3539.
- 21R. P. Rambo, J. A. Tainer, Curr. Opin. Struct. Biol. 2010, 20, 128–137.
- 22J. Lipfert, S. Doniach, Annu. Rev. Biophys. Biomol. Struct. 2007, 36, 307–327.
- 23B. Rybtchinski, L. E. Sinks, M. R. Wasielewski, J. Am. Chem. Soc. 2004, 126, 12268–12269.
- 24R. F. Kelley, B. Rybtchinski, M. T. Stone, J. S. Moore, M. R. Wasielewski, J. Am. Chem. Soc. 2007, 129, 4114–4115.
- 25J. E. Bullock, R. Carmieli, S. M. Mickley, J. Vura-Weis, M. R. Wasielewski, J. Am. Chem. Soc. 2009, 131, 11919–11929.
- 26D. M. Tiede, R. Zhang, L. X. Chen, L. Yu, J. S. Lindsey, J. Am. Chem. Soc. 2004, 126, 14054–14062.
- 27T. Megyes, H. Jude, T. Grósz, I. Bakó, T. Radnai, G. Tárkányi, G. Pálinkás, P. J. Stang, J. Am. Chem. Soc. 2005, 127, 10731–10738.
- 28A. Deák, T. Megyes, G. Tárkányi, P. Király, L. Biczók, G. Pálinkás, P. J. Stang, J. Am. Chem. Soc. 2006, 128, 12668–12670.
- 29S. J. Lee, K. L. Mulfort, J. L. O'Donnell, X. Zuo, A. J. Goshe, P. J. Wesson, S. T. Nguyen, J. T. Hupp, D. M. Tiede, Chem. Commun. 2006, 4581.
- 30J. L. O′Donnell, X. Zuo, A. J. Goshe, L. Sarkisov, R. Q. Snurr, J. T. Hupp, D. M. Tiede, J. Am. Chem. Soc. 2007, 129, 1578–1585.
- 31T. Megyes, S. Bálint, I. Bakó, T. Grósz, G. Pálinkás, J. Am. Chem. Soc. 2008, 130, 9206–9207.
- 32S. J. Lee, K. L. Mulfort, X. Zuo, A. J. Goshe, P. J. Wesson, S. T. Nguyen, J. T. Hupp, D. M. Tiede, J. Am. Chem. Soc. 2008, 130, 836–838.
- 33E. Holló-Sitkei, G. Tárkányi, L. Párkányi, T. Megyes, G. Besenyei, Eur. J. Inorg. Chem. 2008, 1573–1583.
- 34K. L. Mulfort, D. M. Tiede, J. Phys. Chem. B 2010, 114, 14572–14581.
- 35K. L. Mulfort, A. Mukherjee, O. Kokhan, P. Du, D. M. Tiede, Chem. Soc. Rev. 2013, 42, 2215–2227.
- 36I. S. Kim, J. Borycz, A. E. Platero-Prats, S. Tussupbayev, T. C. Wang, O. K. Farha, J. T. Hupp, L. Gagliardi, K. W. Chapman, C. J. Cramer, A. B. F. Martinson, Chem. Mater. 2015, 27, 4772–4778.
- 37A. E. Platero-Prats, Z. Li, L. C. Gallington, A. W. Peters, J. T. Hupp, O. K. Farha, K. W. Chapman, Faraday Discuss. 2017, 201, 337–350.
- 38J. D. Howe, C. R. Morelock, Y. Jiao, K. W. Chapman, K. S. Walton, D. S. Sholl, J. Phys. Chem. C 2017, 121, 627–635.
- 39D. Jung, L. M. A. Saleh, Z. J. Berkson, M. F. El-Kady, J. Y. Hwang, N. Mohamed, A. I. Wixtrom, E. Titarenko, Y. Shao, K. McCarthy, J. Guo, I. B. Martini, S. Kraemer, E. C. Wegener, P. Saint-Cricq, B. Ruehle, R. R. Langeslay, M. Delferro, J. L. Brosmer, C. H. Hendon, M. Gallagher-Jones, J. Rodriguez, K. W. Chapman, J. T. Miller, X. Duan, R. B. Kaner, J. I. Zink, B. F. Chmelka, A. M. Spokoyny, Nat. Mater. 2018, 17, 341–348.
- 40V. Petkov, Y. Ren, S. Kabekkodu, D. Murphy, Phys. Chem. Chem. Phys. 2013, 15, 8544–8554.
- 41L. Soderholm, S. Skanthakumar, J. Neuefeind, Anal. Bioanal. Chem. 2005, 383, 48–55.
- 42B. Qiao, S. Skanthakumar, L. Soderholm, J. Chem. Theory Comput. 2018, 14, 1781–1790.
- 43S. Skanthakumar, G. B. Jin, J. Lin, V. Vallet, L. Soderholm, J. Phys. Chem. B 2017, 121, 8577–8584.
- 44K. E. Knope, S. Skanthakumar, L. Soderholm, Inorg. Chem. 2015, 54, 10192–10196.
- 45K. Fujii, M. Matsugami, K. Ueno, K. Ohara, M. Sogawa, T. Utsunomiya, M. Morita, J. Phys. Chem. C 2017, 121, 22720–22726.
- 46J. Zheng, G. Tan, P. Shan, T. Liu, J. Hu, Y. Feng, L. Yang, M. Zhang, Z. Chen, Y. Lin, J. Lu, J. C. Neuefeind, Y. Ren, K. Amine, L. W. Wang, K. Xu, F. Pan, Chem 2018, 4, 2872–2882.
- 47M. Zobel, R. B. Neder, S. A. J. Kimber, Science 2015, 347, 292–294.
- 48M. Zobel, Acta Crystallogr. Sect. A 2016, 72, 621–631.
- 49D. Hayes, L. Kohler, R. G. Hadt, X. Zhang, C. Liu, K. L. Mulfort, L. X. Chen, Chem. Sci. 2018, 9, 860–875.
- 50J. Bolger, A. Gourdon, E. Ishow, J.-P. Launay, Inorg. Chem. 1996, 35, 2937–2944.
- 51M. Schmittel, C. Michel, S.-X. Liu, D. Schildbach, D. Fenske, Eur. J. Inorg. Chem. 2001, 1155–1166.
- 52S. De, K. Mahata, M. Schmittel, Chem. Soc. Rev. 2010, 39, 1555–1575.
- 53M. Schmittel, A. Ganz, Chem. Commun. 1997, 999–1000.
- 54C. Chiorboli, M. A. J. Rodgers, F. Scandola, J. Am. Chem. Soc. 2003, 125, 483–491.
- 55C. Chiorboli, C. A. Bignozzi, F. Scandola, E. Ishow, A. Gourdon, J.-P. Launay, Inorg. Chem. 1999, 38, 2402–2410.
- 56C. T. Cunningham, K. L. H. Cunningham, J. F. Michalec, D. R. McMillin, Inorg. Chem. 1999, 38, 4388–4392.
- 57M. Ruthkosky, C. A. Kelly, F. N. Castellano, G. J. Meyer, Coord. Chem. Rev. 1998, 171, 309–322.
- 58M. W. Blaskie, D. R. Mcmillin, Inorg. Chem. 1980, 19, 3519–3522.
- 59L. X. Chen, G. Jennings, T. Liu, D. J. Gosztola, J. P. Hessler, D. V. Scaltrito, G. J. Meyer, J. Am. Chem. Soc. 2002, 124, 10861–10867.
- 60X. Qiu, J. W. Thompson, S. J. L. Billinge, J. Appl. Crystallogr. 2004, 37, 678.
- 61S. D. Bergman, M. Kol, Inorg. Chem. 2005, 44, 1647–1654.
- 62Deposition numbers 2084517 (Os-Cu), 2084518 (Os-Os), and 2084519 (Cu-Cu) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 63S. D. Fairbanks, C. C. Robertson, F. R. Keene, J. A. Thomas, M. P. Williamson, J. Am. Chem. Soc. 2019, 141, 4644–4652.
- 64L. Yang, D. R. Powell, R. P. Houser, J. Chem. Soc. Dalton Trans. 2007, 955–964.
- 65L. Kohler, D. Hayes, J. Hong, T. J. Carter, M. L. Shelby, K. A. Fransted, L. X. Chen, K. L. Mulfort, Dalton Trans. 2016, 45, 9871–9883.
- 66L. Kohler, R. G. Hadt, D. Hayes, L. X. Chen, K. L. Mulfort, Dalton Trans. 2017, 46, 13088–13100.
- 67J.-D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 2008, 10, 6615–6620.
- 68P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 270–283.
- 69S. Miertuš, E. Scrocco, J. Tomasi, Chem. Phys. 1981, 55, 117–129.
- 70M. W. Mara, K. A. Fransted, L. X. Chen, Coord. Chem. Rev. 2015, 282–283, 2–18.
- 71S. E. Canton, K. S. Kjær, G. Vankó, T. B. van Driel, S. Adachi, A. Bordage, C. Bressler, P. Chabera, M. Christensen, A. O. Dohn, A. Galler, W. Gawelda, D. Gosztola, K. Haldrup, T. Harlang, Y. Liu, K. B. Møller, Z. Németh, S. Nozawa, M. Pápai, T. Sato, T. Sato, K. Suarez-Alcantara, T. Togashi, K. Tono, J. Uhlig, D. A. Vithanage, K. Wärnmark, M. Yabashi, J. Zhang, V. Sundström, M. M. Nielsen, Nat. Commun. 2015, 6, 6359.
- 72E. Biasin, Z. W. Fox, A. Andersen, K. Ledbetter, K. S. Kjær, R. Alonso-Mori, J. M. Carlstad, M. Chollet, J. D. Gaynor, J. M. Glownia, K. Hong, T. Kroll, J. H. Lee, C. Liekhus-Schmaltz, M. Reinhard, D. Sokaras, Y. Zhang, G. Doumy, A. M. March, S. H. Southworth, S. Mukamel, K. J. Gaffney, R. W. Schoenlein, N. Govind, A. A. Cordones, M. Khalil, Nat. Chem. 2021, 13, 343–349.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.