Unlocking the Stereoselectivity and Substrate Acceptance of Enzymes: Proline-Induced Loop Engineering Test
Dr. Ge Qu
Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
Search for more papers by this authorYuexin Bi
Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
University of Science and Technology of China, Hefei, 230027 China
Search for more papers by this authorBeibei Liu
Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
Search for more papers by this authorJunkuan Li
Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorXu Han
Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
Search for more papers by this authorDr. Weidong Liu
Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
Search for more papers by this authorYingying Jiang
Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorZongmin Qin
Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Zhoutong Sun
Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
Search for more papers by this authorDr. Ge Qu
Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
Search for more papers by this authorYuexin Bi
Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
University of Science and Technology of China, Hefei, 230027 China
Search for more papers by this authorBeibei Liu
Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
Search for more papers by this authorJunkuan Li
Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072 China
Search for more papers by this authorXu Han
Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
Search for more papers by this authorDr. Weidong Liu
Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
Search for more papers by this authorYingying Jiang
Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorZongmin Qin
Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Zhoutong Sun
Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
National Technology Innovation Center of Synthetic Biology, Tianjin, 300308 China
Search for more papers by this authorAbstract
Protein stability and evolvability influence each other. Although protein dynamics play essential roles in various catalytically important properties, their high flexibility and diversity makes it difficult to incorporate such properties into rational engineering. Therefore, how to unlock the potential evolvability in a user-friendly rational design process remains a challenge. In this endeavor, we describe a method for engineering an enantioselective alcohol dehydrogenase. It enables synthetically important substrate acceptance for 4-chlorophenyl pyridine-2-yl ketone, and perfect stereocontrol of both (S)- and (R)-configured products. Thermodynamic analysis unveiled the subtle interaction between enzyme stability and evolvability, while computational studies provided insights into the origin of selectivity and substrate recognition. Preparative-scale synthesis of the (S)-product (73 % yield; >99 % ee) was performed on a gram-scale. This proof-of-principle study demonstrates that interfaced proline residues can be rationally engineered to unlock evolvability and thus provide access to new biocatalysts with highly improved catalytic performance.
Conflict of interest
This work has been included in a patent application by the Tianjin Institute of Industrial Biotechnology.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202110793-sup-0001-misc_information.pdf2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aN. Tokuriki, D. S. Tawfik, Science 2009, 324, 203–207;
- 1bR. B. Leveson-Gower, C. Mayer, G. Roelfes, Nat. Rev. Chem. 2019, 3, 687–705;
- 1cG. Qu, A. Li, C. G. Acevedo-Rocha, Z. Sun, M. T. Reetz, Angew. Chem. Int. Ed. 2020, 59, 13204–13231; Angew. Chem. 2020, 132, 13304–13333.
- 2
- 2aN. Tokuriki, D. S. Tawfi, Curr. Opin. Struct. Biol. 2009, 19, 596–604;
- 2bD. Petrović, S. C. L. Kamerlin, Curr. Opin. Struct. Biol. 2018, 52, 50–57.
- 3
- 3aR. M. Crean, J. M. Gardner, S. C. L. Kamerlin, J. Am. Chem. Soc. 2020, 142, 11324–11342;
- 3bP. K. Agarwal, D. N. Bernard, K. Bafna, N. Doucet, ChemCatChem 2020, 12, 4704–4720;
- 3cD. Petrović, V. A. Risso, S. C. L. Kamerlin, J. M. Sanchez-Ruiz, J. R. Soc. Interface 2018, 15, 20180330;
- 3dD. L. Trudeau, D. S. Tawfik, Curr. Opin. Biotechnol. 2019, 60, 46–52;
- 3eA. Pabis, V. A. Risso, J. M. Sanchez-Ruiz, S. C. L. Kamerlin, Curr. Opin. Struct. Biol. 2018, 48, 83–92;
- 3fE. C. Campbell, G. J. Correy, P. D. Mabbitt, A. M. Buckle, N. Tokuriki, C. J. Jackson, Curr. Opin. Struct. Biol. 2018, 50, 49–57;
- 3gR. Otten, R. A. P. Pádua, H. A. Bunzel, V. Nguyen, W. Pitsawong, M. Patterson, S. Sui, S. L. Perry, A. E. Cohen, D. Hilvert, D. Kern, Science 2020, 370, 1442–1446;
- 3hP. M. Heinemann, D. Armbruster, B. Hauer, Nat. Commun. 2021, 12, 1095;
- 3iG. Brändén, R. Neutze, Science 2021, 373, eaba0954;
- 3jJ. Xu, Y. Cen, W. Singh, J. Fan, L. Wu, X. Lin, J. Zhou, M. Huang, M. T. Reetz, Q. Wu, J. Am. Chem. Soc. 2019, 141, 7934–7945.
- 4
- 4aB. K. Shoichet, W. A. Baase, R. Kuroki, B. W. Matthews, Proc. Natl. Acad. Sci. USA 1995, 92, 452–456;
- 4bJ. D. Bloom, S. T. Labthavikul, C. R. Otey, F. H. Arnold, Proc. Natl. Acad. Sci. USA 2006, 103, 5869–5874;
- 4cZ. Sun, Q. Liu, G. Qu, Y. Feng, M. T. Reetz, Chem. Rev. 2019, 119, 1626–1665;
- 4dM. M. Pinney, D. A. Mokhtari, E. Akiva, F. Yabukarski, D. M. Sanchez, R. Liang, T. Doukov, T. J. Martinez, P. C. Babbitt, D. Herschlag, Science 2021, 371, eaay2784.
- 5
- 5aD. Ouedraogo, M. Souffrant, S. Vasquez, D. Hamelberg, G. Gadda, Biochemistry 2017, 56, 2477–2487;
- 5bB. Liu, G. Qu, J. Li, W. Fan, J. A. Ma, Y. Xu, Y. Nie, Z. Sun, Adv. Synth. Catal. 2019, 361, 3182–3190;
- 5cS.-S. Han, H.-H. Kyeong, J. M. Choi, Y. K. Sohn, J.-H. Lee, H.-S. Kim, ACS Catal. 2016, 6, 8440–8445;
- 5dS.-M. Ren, F. Liu, Y.-Q. Wu, Q. Chen, Z.-J. Zhang, H.-L. Yu, J.-H. Xu, Biotechnol. Bioeng. 2021, 118, 737–744;
- 5eJ. A. Kaczmarski, M. C. Mahawaththa, A. Feintuch, B. E. Clifton, L. A. Adams, D. Goldfarb, G. Otting, C. J. Jackson, Nat. Commun. 2020, 11, 5945;
- 5fR. Parra-Cruz, C. M. Jager, P. L. Lau, R. L. Gomes, A. Pordea, J. Phys. Chem. B 2018, 122, 8526–8536;
- 5gJ. Li, G. Qu, N. Shang, P. Chen, Y. Men, W. Liu, Z. Mei, Y. Sun, Z. Sun, Green Synth. Catal. 2021, 2, 45–53.
- 6N. Kreß, J. M. Halder, L. R. Rapp, B. Hauer, Curr. Opin. Chem. Biol. 2018, 47, 109–116.
- 7
- 7aJ. P. Klinman, A. Kohen, J. Biol. Chem. 2014, 289, 30205–30212;
- 7bK. E. Johansson, K. Lindorff-Larsen, Curr. Opin. Struct. Biol. 2018, 48, 157–163;
- 7cP. Campitelli, T. Modi, S. Kumar, S. B. Ozkan, Annu. Rev. Biophys. 2020, 49, 267–288.
- 8S. Osuna, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2020, e1502.
- 9
- 9aS. Wu, J. P. Acevedo, M. T. Reetz, Proc. Natl. Acad. Sci. USA 2010, 107, 2775–2780;
- 9bC. G. Acevedo-Rocha, A. Li, L. D′Amore, S. Hoebenreich, J. Sanchis, P. Lubrano, M. P. Ferla, M. Garcia-Borràs, S. Osuna, M. T. Reetz, Nat. Commun. 2021, 12, 1621.
- 10
- 10aA. Remeeva, V. V. Nazarenko, I. M. Goncharov, A. Yudenko, A. Smolentseva, O. Semenov, K. Kovalev, C. Gulbahar, U. Schwaneberg, M. D. Davari, V. Gordeliy, I. Gushchin, Crystals 2020, 10, 256;
- 10bB. Verstak, C. J. Arnot, N. J. Gay, J. Immunol. 2013, 191, 6101–6109;
- 10cK. Bajaj, M. S. Madhusudhan, B. V. Adkar, P. Chakrabarti, C. Ramakrishnan, A. Sali, R. Varadarajan, PLoS Comput. Biol. 2007, 3, e241;
- 10dA. Nisthal, C. Y. Wang, A. L. Ary, S. L. Mayo, Proc. Natl. Acad. Sci. USA 2019, 116, 16367–16377;
- 10eE. J. Choi, S. L. Mayo, Protein Eng. Des. Sel. 2006, 19, 285–289.
- 11H. Land, J. C. Campillo-Brocal, M. S. Humble, P. Berglund, ChemBioChem 2019, 20, 1297–1304.
- 12
- 12aJ. S. Richardson, D. C. Richardson, Science 1988, 240, 1648–1652;
- 12bH. Reiersen, A. R. Rees, Trends Biochem. Sci. 2001, 26, 679–684.
- 13C. M. Nealon, M. M. Musa, J. M. Patel, R. S. Phillips, ACS Catal. 2015, 5, 2100–2114.
- 14
- 14aM. M. Musa, N. Lott, M. Laivenieks, L. Watanabe, C. Vieille, R. S. Phillips, ChemCatChem 2009, 1, 89–93;
- 14bG. Li, M. A. Maria-Solano, A. Romero-Rivera, S. Osuna, M. T. Reetz, Chem. Commun. 2017, 53, 9454–9457.
- 15D. M. Weinreich, R. A. Watson, L. Chao, Evolution 2005, 59, 1165–1174.
- 16Y. Korkhin, A. J. Kalb, M. Peretz, O. Bogin, Y. Burstein, F. Frolow, J. Mol. Biol. 1998, 278, 967–981.
- 17M. Moradi, V. Babin, C. Roland, T. A. Darden, C. Sagui, Proc. Natl. Acad. Sci. USA 2009, 106, 20746–20751.
- 18V. Babin, C. Roland, C. Sagui, J. Chem. Phys. 2008, 128, 134101.
- 19C. M. Miton, N. Tokuriki, Protein Sci. 2016, 25, 1260–1272.
- 20
- 20aM. T. Reetz, M. Bocola, J. D. Carballeira, D. Zha, A. Vogel, Angew. Chem. Int. Ed. 2005, 44, 4192–4196; Angew. Chem. 2005, 117, 4264–4268;
- 20bM. T. Reetz, J. D. Carballeira, Nat. Protoc. 2007, 2, 891–903.
- 21
- 21aM. T. Reetz, Angew. Chem. Int. Ed. 2013, 52, 2658–2666; Angew. Chem. 2013, 125, 2720–2729;
- 21bZ.-G. Zhang, R. Lonsdale, J. Sanchis, M. T. Reetz, J. Am. Chem. Soc. 2014, 136, 17262–17272.
- 22J. Zhou, G. Xu, Y. Ni, ACS Catal. 2020, 10, 10954–10966.
- 23
- 23aT. Kida, A. Fujii, O. Sakai, M. Iemura, I. Atsumi, T. Wada, H. Sakaki, Exp. Eye Res. 2010, 91, 85–91;
- 23bV. Barouh, H. Dall, G. Hite, J. Med. Chem. 1971, 14, 834–836.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.