Configurational Lability at Tetrahedral Phosphorus: syn/anti-Isomerization of a P-Stereogenic Phosphiranium Cation by Intramolecular Epimerization at Phosphorus
Ryan M. Tipker
6128 Burke Laboratory, Department of Chemistry, Dartmouth College, Hanover, NH, 03755 USA
Search for more papers by this authorDr. Jake A. Muldoon
6128 Burke Laboratory, Department of Chemistry, Dartmouth College, Hanover, NH, 03755 USA
Search for more papers by this authorDaniel H. Pham
6128 Burke Laboratory, Department of Chemistry, Dartmouth College, Hanover, NH, 03755 USA
Search for more papers by this authorDr. Balazs R. Varga
6128 Burke Laboratory, Department of Chemistry, Dartmouth College, Hanover, NH, 03755 USA
Search for more papers by this authorCorresponding Author
Prof. Russell P. Hughes
6128 Burke Laboratory, Department of Chemistry, Dartmouth College, Hanover, NH, 03755 USA
Search for more papers by this authorCorresponding Author
Prof. David S. Glueck
6128 Burke Laboratory, Department of Chemistry, Dartmouth College, Hanover, NH, 03755 USA
Search for more papers by this authorDr. Gary J. Balaich
Department of Chemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093 USA
Search for more papers by this authorProf. Arnold L. Rheingold
Department of Chemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093 USA
Search for more papers by this authorRyan M. Tipker
6128 Burke Laboratory, Department of Chemistry, Dartmouth College, Hanover, NH, 03755 USA
Search for more papers by this authorDr. Jake A. Muldoon
6128 Burke Laboratory, Department of Chemistry, Dartmouth College, Hanover, NH, 03755 USA
Search for more papers by this authorDaniel H. Pham
6128 Burke Laboratory, Department of Chemistry, Dartmouth College, Hanover, NH, 03755 USA
Search for more papers by this authorDr. Balazs R. Varga
6128 Burke Laboratory, Department of Chemistry, Dartmouth College, Hanover, NH, 03755 USA
Search for more papers by this authorCorresponding Author
Prof. Russell P. Hughes
6128 Burke Laboratory, Department of Chemistry, Dartmouth College, Hanover, NH, 03755 USA
Search for more papers by this authorCorresponding Author
Prof. David S. Glueck
6128 Burke Laboratory, Department of Chemistry, Dartmouth College, Hanover, NH, 03755 USA
Search for more papers by this authorDr. Gary J. Balaich
Department of Chemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093 USA
Search for more papers by this authorProf. Arnold L. Rheingold
Department of Chemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093 USA
Search for more papers by this authorAbstract
Tetrahedral main-group compounds are normally configurationally stable, but P-epimerization of the chiral phosphiranium cations syn- or anti-[Mes*P(Me)CH2CHPh][OTf] (Mes*=2,4,6-(t-Bu)3C6H2) occurred under mild conditions at 60 °C in CD2Cl2, resulting in isomerization to give a syn-enriched equilibrium mixture. Ion exchange with excess [NBu4][Δ-TRISPHAT] (Δ-TRISPHAT=Δ-P(o-C6Cl4O2)3) followed by chromatography on silica removed [NBu4][OTf] and gave mixtures of syn- and anti-[Mes*P(Me)CH2CHPh][Δ-TRISPHAT]⋅x[NBu4][Δ-TRISPHAT]. NMR spectroscopy showed that isomerization proceeded with epimerization at P and retention at C. DFT calculations are consistent with a mechanism involving P-C cleavage to yield a hyperconjugation-stabilized carbocation, pyramidal inversion promoted by σ-interaction of the P lone pair with the neighboring β-carbocation, and ring closure with inversion of configuration at P.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202110753-sup-0001-misc_information.pdf8.7 MB | Supporting Information |
ange202110753-sup-0001-SI.cif2.7 MB | Supporting Information |
ange202110753-sup-0001-xyz.zip21.5 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1E. L. Eliel, S. H. Wilen, L. N. Mander, Stereochemistry of Organic Compounds, Wiley-Interscience, New York, 1994.
- 2M. Oestreich, Synlett 2007, 1629–1643.
- 3P. K. Eckert, C. Golz, P. Degen, C. Werner, H. Rehage, C. Strohmann, Chem. Eur. J. 2014, 20, 3268–3272.
- 4R. S. Edmundson in The Chemistry of Organophosphorus Compounds, Vol. 2 (Ed.: F. R. Hartley), Wiley, Chichester, 1992, pp. 287–407.
- 5C. Alayrac, S. Lakhdar, I. Abdellah, A.-C. Gaumont, Top. Curr. Chem. 2014, 361, 1–82.
- 6H. J. Cristau, F. Plenat in The Chemistry of Organophosphorus Compounds, Vol. 3 (Ed.: F. R. Hartley), Wiley, Chichester, 1994, pp. 45–183.
- 7For protonation of enantiomerically enriched P-stereogenic phosphines to yield easily handled phosphonium salts, see
- 7aW. S. Knowles, M. J. Sabacky, B. D. Vineyard, Adv. Chem. Ser. 1974, 132, 274–282;
- 7bH. Danjo, W. Sasaki, T. Miyazaki, T. Imamoto, Tetrahedron Lett. 2003, 44, 3467–3469.
- 8S. Raghunathan, K. Yadav, V. C. Rojisha, T. Jaganade, V. Prathyusha, S. Bikkina, U. Lourderaj, U. D. Priyakumar, Phys. Chem. Chem. Phys. 2020, 22, 14983–14991.
- 9
- 9aD. J. Cram, A. Ratajczak, J. Am. Chem. Soc. 1968, 90, 2198–2200;
- 9bN. E. Howe, E. W. Yankee, D. J. Cram, J. Am. Chem. Soc. 1973, 95, 4230–4237;
- 9cJ. E. Baldwin in The Chemistry of the Cyclopropyl Group (Ed.: S. Patai), Wiley, Hoboken, 1995, pp. 469–494.
10.1002/0470023481.ch9 Google Scholar
- 10In phosphirane-borane, a model for the phosphiranium cation, the computed ring strain energy was 29–31 kcal mol−1, depending on the level of theory. A. Espinosa, E. de las Heras, R. Streubel, Inorg. Chem. 2014, 53, 6132–6140; Ring strain in cyclopropane is 27.5 kcal mol−1 ( E. V. Anslyn, D. A. Dougherty, Modern Physical Organic Chemistry, University Science Books, Sausalito, 2006, p. 100).
- 11S. S. Chitnis, R. A. Musgrave, H. A. Sparkes, N. E. Pridmore, V. T. Annibale, I. Manners, Inorg. Chem. 2017, 56, 4521–4537.
- 12
- 12aD. S. Glueck in Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Elsevier, Amsterdam, 2019,
https://doi.org/10.1016/B978-0-12-409547-409542.14761-4;
10.1016/B978-0-12-409547-409542.14761-4 Google Scholar
- 12bJ. Gasnot, C. Botella, S. Comesse, S. Lakhdar, C. Alayrac, A.-C. Gaumont, V. Dalla, C. Taillier, Synlett 2020, 31, 883–888;
- 12cC. Rosorius, J. Möricke, B. Wibbeling, A. C. McQuilken, T. H. Warren, C. G. Daniliuc, G. Kehr, G. Erker, Chem. Eur. J. 2016, 22, 1103–1113;
- 12dS. Krupski, G. Kehr, C. G. Daniliuc, G. Erker, Chem. Commun. 2016, 52, 2695–2697;
- 12eF. Lavigne, E. Maerten, G. Alcaraz, N. Saffon-Merceron, A. Baceiredo, Chem. Eur. J. 2014, 20, 297–303;
- 12fN. Dellus, T. Kato, N. Saffon-Merceron, V. Branchadell, A. Baceiredo, Inorg. Chem. 2011, 50, 7949–7951;
- 12gA. Ficks, I. Martinez-Botella, B. Stewart, R. W. Harrington, W. Clegg, L. J. Higham, Chem. Commun. 2011, 47, 8274–8276;
- 12hJ. Liedtke, S. Loss, C. Widauer, H. Grützmacher, Tetrahedron 2000, 56, 143–156;
- 12iD. C. R. Hockless, M. A. McDonald, M. Pabel, S. B. Wild, J. Chem. Soc. Chem. Commun. 1995, 257–258;
- 12jD. C. R. Hockless, M. A. McDonald, M. Pabel, S. B. Wild, J. Organomet. Chem. 1997, 529, 189–196.
- 13
- 13aJ. Gasnot, C. Botella, S. Comesse, S. Lakhdar, C. Alayrac, A.-C. Gaumont, V. Dalla, C. Taillier, Angew. Chem. Int. Ed. 2020, 59, 11769–11773; Angew. Chem. 2020, 132, 11867–11871;
- 13bS. Kobayashi, J. Kadokawa, Macromol. Rapid Commun. 1994, 15, 567–571;
- 13cJ. Kadokawa, S. Kobayashi, Phosphorus Sulfur Silicon Relat. Elem. 2002, 177, 1387–1390;
- 13dN. E. Brasch, I. G. Hamilton, E. H. Krenske, S. B. Wild, Organometallics 2004, 23, 299–302;
- 13eT. I. Sølling, M. A. McDonald, S. B. Wild, L. Radom, J. Am. Chem. Soc. 1998, 120, 7063–7068.
- 14
- 14aH. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem. Int. Ed. 2001, 40, 2004–2021;
10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5 CAS PubMed Web of Science® Google ScholarAngew. Chem. 2001, 113, 2056–2075;
- 14bA. Espinosa Ferao, A. Rey Planells, R. Streubel, Eur. J. Inorg. Chem. 2021, 348–353.
- 15R. D. Baechler, K. Mislow, J. Am. Chem. Soc. 1970, 92, 3090–3093.
- 16E. V. Anslyn, D. A. Dougherty, Modern Physical Organic Chemistry, University Science Books, Sausalito, 2006, pp. 53–58.
- 17J. B. Lambert, Y. Zhao, J. Am. Chem. Soc. 1996, 118, 3156–3167.
- 18J. A. Muldoon, B. R. Varga, M. M. Deegan, T. W. Chapp, Á. M. Eördögh, R. P. Hughes, D. S. Glueck, C. E. Moore, A. L. Rheingold, Angew. Chem. Int. Ed. 2018, 57, 5047–5051; Angew. Chem. 2018, 130, 5141–5145.
- 19
- 19aA. B. Burg, Inorg. Chem. 1964, 3, 1325–1327;
- 19bM. A. Pet, M. F. Cain, R. P. Hughes, D. S. Glueck, J. A. Golen, A. L. Rheingold, J. Organomet. Chem. 2009, 694, 2279–2289.
- 20
- 20aM. M. Deegan, J. A. Muldoon, R. P. Hughes, D. S. Glueck, A. L. Rheingold, Organometallics 2018, 37, 1473–1482;
- 20bDeposition Numbers 1839255, 1839256 and 2062910, and 2062911 contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures.
- 21K. L. Nash, D. Brigham, T. C. Shehee, A. Martin, Dalton Trans. 2012, 41, 14547–14556.
- 22
- 22aJ. Lacour, C. R. Chim. 2010, 13, 985–997;
- 22bJ. Lacour, D. Moraleda, Chem. Commun. 2009, 7073–7089;
- 22cF. Favarger, C. Goujon-Ginglinger, D. Monchaud, J. Lacour, J. Org. Chem. 2004, 69, 8521–8524.
- 23C. Ginglinger, D. Jeannerat, J. Lacour, S. Jugé, J. Uziel, Tetrahedron Lett. 1998, 39, 7495–7498.
- 24L. Pasquato, C. Herse, J. Lacour, Tetrahedron Lett. 2002, 43, 5517–5520.
- 25For valid comparison to previous calculations (ref [18]), relative gas-phase free energies (G) using this functional and basis set are presented in Scheme 5. Solvation energies of all species (CH2Cl2) were evaluated; the values are so similar that they do not make any significant differences in relative free energies. Full details and a brief discussion of the (minor) effects of varying the DFT functional and basis set are given in the SI.
- 26V. R. Naidu, S. Ni, J. Franzén, ChemCatChem 2015, 7, 1896–1905.
- 27Related interactions have been proposed before for Ga, Al, or Ag+ Lewis acids.
- 27aM. D. Fryzuk, G. R. Giesbrecht, S. J. Rettig, Inorg. Chem. 1998, 37, 6928–6934;
- 27bT. Mizuta, T. Aotani, Y. Imamura, K. Kubo, K. Miyoshi, Organometallics 2008, 27, 2457–2463.
- 28The barrier computed for PhP(Me)CH2CH2Ph (28.9 kcal mol−1) was in reasonable agreement with the experimental value of 32.1 kcal mol−1 for PhP(Me)CH2CH2Me (ref [15]).
- 29C. H. Heathcock, T. W. Von Geldern, C. B. Lebrilla, W. F. Maier, J. Org. Chem. 1985, 50, 968–972.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.