Synthesis of Functionalized Silsesquioxane Nanomaterials by Rhodium-Catalyzed Carbene Insertion into Si−H Bonds
Jake R. Jagannathan
Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, USA
These authors contributed equally to this work.
Search for more papers by this authorKarina Targos
Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, USA
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Annaliese K. Franz
Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, USA
Search for more papers by this authorJake R. Jagannathan
Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, USA
These authors contributed equally to this work.
Search for more papers by this authorKarina Targos
Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, USA
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Annaliese K. Franz
Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, USA
Search for more papers by this authorAbstract
We report carbene insertion into Si−H bonds of polyhedral oligomeric silsesquioxanes (POSS) for the synthesis of highly functionalized siloxane nanomaterials. Dirhodium(II) carboxylates catalyze insertion of aryl-diazoacetates as carbene precursors to afford POSS structures containing both ester and aryl groups as orthogonal functional handles for further derivatization of POSS materials. Four diverse and structurally varied silsesquioxane core scaffolds with one, three, or eight Si−H bonds were evaluated with diazo reactants to produce a total of 20 new POSS compounds. Novel diazo compounds containing a fluorinated octyl group and boron-dipyrromethene (BODIPY) chromophore demonstrate the use of highly functionalized substrates. Transformations of aryl(ester)-functionalized POSS compounds derived from this method are demonstrated, including ester hydrolysis and Suzuki–Miyaura cross-coupling.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202110417-sup-0001-misc_information.pdf11.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Z. Li, J. Kong, F. Wang, C. He, J. Mater. Chem. C 2017, 5, 5283–5298.
- 2D. B. Cordes, P. D. Lickiss, F. Rataboul, Chem. Rev. 2010, 110, 2081–2173.
- 3C. Sanchez, P. Belleville, M. Popall, L. Nicole, Chem. Soc. Rev. 2011, 40, 696–753.
- 4J. Wu, P. T. Mather, Polym. Rev. 2009, 49, 25–63.
- 5F. Seidi, M. Jouyandeh, A. Taghizadeh, M. Taghizadeh, S. Habibzadeh, Y. Jin, H. Xiao, P. Zarrintaj, M. R. Saeb, Surf. Innovations 2021, 9, 3–16.
- 6Y. Li, X.-H. Dong, Y. Zou, Z. Wang, K. Yue, M. Huang, H. Liu, X. Feng, Z. Lin, W. Zhang, et al., Polymer 2017, 125, 303–329.
- 7S. Liu, R. Guo, C. Li, C. Lu, G. Yang, F. Wang, J. Nie, C. Ma, M. Gao, Eur. Polym. J. 2021, 143, 110180.
- 8A. Tuteja, W. Choi, J. M. Mabry, G. H. McKinley, R. E. Cohen, Science 2007, 318, 1618–1622.
- 9T. K. Minton, M. E. Wright, S. J. Tomczak, S. A. Marquez, L. Shen, A. L. Brunsvold, R. Cooper, J. Zhang, V. Vij, A. J. Guenthner, et al., ACS Appl. Mater. Interfaces 2012, 4, 492–502.
- 10M. Qian, V. J. Murray, W. Wei, B. C. Marshall, T. K. Minton, ACS Appl. Mater. Interfaces 2016, 8, 33982–33992.
- 11J. D. Lichtenhan, D. A. Hildebrandt, L. J. Lancaster, Dalton Trans. 2017, 46, 8788–8796.
- 12M. Feghhi, J. Rezaie, A. Akbari, N. Jabbari, H. Jafari, F. Seidi, S. Szafert, Mater. Des. 2021, 197, 109227–109238.
- 13K. Rozga-Wijas, M. Sierant, React. Funct. Polym. 2019, 143, 104332–104343.
- 14Ł. John, M. Malik, M. Janeta, S. Szafert, RSC Adv. 2017, 7, 8394–8401.
- 15T. A. T. Canellas, A. de Almeida Neves, I. K. B. dos Santos, A. R. P. de Rezende, C. E. Fellows, E. M. da Silva, J. Mech. Behav. Biomed. Mater. 2019, 90, 566–574.
- 16Z. Li, H. Zhang, G. Xiong, J. Zhang, R. Guo, L. Li, H. Zhou, G. Chen, Z. Zhou, Q. Li, J. Mech. Behav. Biomed. Mater. 2020, 103, 103515–103523.
- 17S. Chanmungkalakul, V. Ervithayasuporn, S. Hanprasit, M. Masik, N. Prigyai, S. Kiatkamjornwong, Chem. Commun. 2017, 53, 12108–12111.
- 18K. Tanaka, Y. Chujo, J. Mater. Chem. 2012, 22, 1733–1746.
- 19W. Zhang, A. H. E. Müller, Prog. Polym. Sci. 2013, 38, 1121–1162.
- 20H. Zhou, Q. Ye, J. Xu, Mater. Chem. Front. 2017, 1, 212–230.
- 21Precursors for 1, 6 and 8 were purchased from Hybridplastics.com.
- 22B. Dudziec, P. Żak, B. Marciniec, Polymers 2019, 11, 504–543.
- 23H. Imoto, Y. Ueda, Y. Sato, M. Nakamura, K. Mitamura, S. Watase, K. Naka, Eur. J. Inorg. Chem. 2020, 737–742.
- 24D. Brząkalski, M. Walczak, J. Duszczak, B. Dudziec, B. Marciniec, Eur. J. Inorg. Chem. 2018, 4905–4910.
- 25H. Imoto, S. Wada, K. Naka, Dalton Trans. 2017, 46, 6168–6171.
- 26H. Imoto, S. Wada, T. Yumura, K. Naka, Eur. J. Inorg. Chem. 2019, 2202–2207.
- 27M. Walczak, K. Stefanowska, A. Franczyk, J. Walkowiak, A. Wawrzyńczak, B. Marciniec, J. Catal. 2018, 367, 1–6.
- 28M. Walczak, A. Franczyk, M. Dutkiewicz, B. Marciniec, Organometallics 2019, 38, 3018–3024.
- 29H. Keipour, V. Carreras, T. Ollevier, Org. Biomol. Chem. 2017, 15, 5441–5456.
- 30D. Chen, D.-X. Zhu, M.-H. Xu, J. Am. Chem. Soc. 2016, 138, 1498–1501.
- 31H. Keipour, A. Jalba, L. Delage-Laurin, T. Ollevier, J. Org. Chem. 2017, 82, 3000–3010.
- 32H. Gu, Z. Han, H. Xie, X. Lin, Org. Lett. 2018, 20, 6544–6549.
- 33H. Keipour, T. Ollevier, Org. Lett. 2017, 19, 5736–5739.
- 34Y. Nakagawa, S. Chanthamath, I. Fujisawa, K. Shibatomi, S. Iwasa, Chem. Commun. 2017, 53, 3753–3756.
- 35S. B. J. Kan, R. D. Lewis, K. Chen, F. H. Arnold, Science 2016, 354, 1048–1051.
- 36F. E. Hahn, Chem. Rev. 2018, 118, 9455–9456.
- 37J. Lloret, J. J. Carbó, C. Bo, A. Lledós, J. Pérez-Prieto, Organometallics 2008, 27, 2873–2876.
- 38Z. J. Garlets, H. M. L. Davies, Org. Lett. 2018, 20, 2168–2171.
- 39H. M. L. Davies, T. Hansen, M. R. Churchill, J. Am. Chem. Soc. 2000, 122, 3063–3070.
- 40A. Ford, H. Miel, A. Ring, C. N. Slattery, A. R. Maguire, M. A. McKervey, Chem. Rev. 2015, 115, 9981–10080.
- 41J. M. Mabry, A. Vij, S. T. Iacono, B. D. Viers, Angew. Chem. Int. Ed. 2008, 47, 4137–4140; Angew. Chem. 2008, 120, 4205–4208.
- 42M. Liras, M. Pintado-Sierra, F. Amat-Guerri, R. Sastre, J. Mater. Chem. 2011, 21, 12803–12811.
- 43I. Blanco, J. Nanomed. 2018, 1, 1002.
10.33582/2578-8760/1002 Google Scholar
- 44A. Loudet, K. Burgess, Chem. Rev. 2007, 107, 4891–4932.
- 45H. Imoto, Y. Nakao, N. Nishizawa, S. Fujii, Y. Nakamura, K. Naka, Polym. J. 2015, 47, 609–615.
- 46S. Yusa, S. Ohno, T. Honda, H. Imoto, Y. Nakao, K. Naka, Y. Nakamura, S. Fujii, RSC Adv. 2016, 6, 73006–73012.
- 47M. K. Kolel-Veetil, D. D. Dominguez, C. A. Klug, T. M. Keller, Macromolecules 2009, 42, 3992–4001.
- 48POSS with two Si−H bonds were attempted with this method and routinely produced complex mixtures using 1H NMR Spectroscopy.
- 49M. F. Roll, M. Z. Asuncion, J. Kampf, R. M. Laine, ACS Nano 2008, 2, 320–326.
- 50E. Rikowski, H. C. Marsmann, Polyhedron 1997, 16, 3357–3361.
- 51Z. Li, Y. Kawakami, Chem. Lett. 2008, 37, 804–805.
- 52C. M. Brick, Y. Ouchi, Y. Chujo, R. M. Laine, Macromolecules 2005, 38, 4661–4665.
- 53A. J. J. Lennox, G. C. Lloyd-Jones, Chem. Soc. Rev. 2014, 43, 412–443.
- 54A. J. J. Lennox, G. C. Lloyd-Jones, Angew. Chem. Int. Ed. 2013, 52, 7362–7370; Angew. Chem. 2013, 125, 7506–7515.
- 55Y. Wu, D. C. Limburg, D. E. Wilkinson, M. J. Vaal, G. S. Hamilton, Tetrahedron Lett. 2000, 41, 2847–2849.
- 56S. Shanmugan, D. Cani, P. P. Pescarmona, Chem. Commun. 2014, 50, 11008–11011.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.