Chemoselective and Diastereoselective Synthesis of C-Aryl Nucleoside Analogues by Nickel-Catalyzed Cross-Coupling of Furanosyl Acetates with Aryl Iodides
Yuxi Li
Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084 China
National Institute of Biological Sciences, Beijing, 102206 China
Search for more papers by this authorZheng Wang
National Institute of Biological Sciences, Beijing, 102206 China
These authors contributed equally to this work.
Search for more papers by this authorLuyang Li
National Institute of Biological Sciences, Beijing, 102206 China
These authors contributed equally to this work.
Search for more papers by this authorXiaoying Tian
National Institute of Biological Sciences, Beijing, 102206 China
Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 102206 China
Search for more papers by this authorDr. Feng Shao
Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084 China
National Institute of Biological Sciences, Beijing, 102206 China
Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 102206 China
Search for more papers by this authorCorresponding Author
Dr. Chao Li
Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084 China
National Institute of Biological Sciences, Beijing, 102206 China
Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 102206 China
Search for more papers by this authorYuxi Li
Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084 China
National Institute of Biological Sciences, Beijing, 102206 China
Search for more papers by this authorZheng Wang
National Institute of Biological Sciences, Beijing, 102206 China
These authors contributed equally to this work.
Search for more papers by this authorLuyang Li
National Institute of Biological Sciences, Beijing, 102206 China
These authors contributed equally to this work.
Search for more papers by this authorXiaoying Tian
National Institute of Biological Sciences, Beijing, 102206 China
Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 102206 China
Search for more papers by this authorDr. Feng Shao
Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084 China
National Institute of Biological Sciences, Beijing, 102206 China
Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 102206 China
Search for more papers by this authorCorresponding Author
Dr. Chao Li
Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084 China
National Institute of Biological Sciences, Beijing, 102206 China
Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 102206 China
Search for more papers by this authorAbstract
Canonical nucleosides are vulnerable to enzymatic and chemical degradation, yet their stable mimics—C-aryl nucleosides—have demonstrated potential utility in medicinal chemistry, chemical biology, and synthetic biology, although current synthetic methods remain limited in terms of scope and selectivity. Herein, we report a cross-electrophile coupling to prepare C-aryl nucleoside analogues from readily available furanosyl acetates and aryl iodides. This nickel-catalyzed modular approach is characterized by mild reaction conditions, broad substrate scope, excellent β-selectivity, and high functional-group compatibility. The exclusive chemoselectivity with respect to the aryl iodide enables efficient preparation of a variety of C-aryl halide furanosides suitable for various downstream transformations. The practicality of this transformation is demonstrated through the synthesis of a potent analogue of a naturally occurring NF-κB activator.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202110391-sup-0001-misc_information.pdf20.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ. Štambaský, M. Hocek, P. Kočovský, Chem. Rev. 2009, 109, 6729–6764;
- 1bE. De Clercq, J. Med. Chem. 2016, 59, 2301–2311;
- 1cK. Temburnikar, K. L. Seley-Radtke, Beilstein J. Org. Chem. 2018, 14, 772–785.
- 2K. Gharehbaghi, W. Grünberger, H. N. Jayaram, Curr. Med. Chem. 2002, 9, 743–748.
- 3T. Kontrohr, B. Kocsis, J. Biol. Chem. 1984, 259, 11858–11860.
- 4
- 4aP. Zhou, Y. She, N. Dong, P. Li, H. He, A. Borio, Q. Wu, S. Lu, X. Ding, Y. Cao, Y. Xu, W. Gao, M. Dong, J. Ding, D.-C. Wang, A. Zamyatina, F. Shao, Nature 2018, 561, 122–126;
- 4bL. Pfannkuch, R. Hurwitz, J. Trauisen, J. Sigulla, M. Poeschke, L. Matzner, P. Kosma, M. Schmid, T. F. Meyer, FASEB J. 2019, 33, 9087–9099.
- 5
- 5a“Synthesis of C-Nucleosides”: O. Boutureira, M. I. Matheu, Y. Díaz, S. Castillón in Chemical Synthesis of Nucleoside Analogues (Ed.: P. Merino), Wiley, Hoboken, 2013, pp. 263–316;
10.1002/9781118498088.ch7 Google Scholar
- 5bM. F. A. Adamo, R. Pergoli, Curr. Org. Chem. 2008, 12, 1544–1569;
- 5cQ. Wu, C. Simons, Synthesis 2004, 10, 1533–1553;
- 5dY. Yang, B. Yu, Chem. Rev. 2017, 117, 12281–12356.
- 6For a recent example, see: L. Adak, S. Kawamura, G. Toma, T. Takenaka, K. Isozaki, H. Takaya, A. Orita, H. C. Li, T. K. M. Shing, M. Nakamura, J. Am. Chem. Soc. 2017, 139, 10693–10701.
- 7
- 7aQ. Wang, S. An, Z. Deng, W. Zhu, Z. Huang, G. He, G. Chen, Nat. Catal. 2019, 2, 793–800;
- 7bW. Lv, Y. Chen, S. Wen, D. Ba, G. Cheng, J. Am. Chem. Soc. 2020, 142, 14864–14870.
- 8
- 8aY. Ma, S. Liu, Y. Xi, H. Li, K. Yang, Z. Cheng, W. Wang, Y. Zhang, Chem. Commun. 2019, 55, 14657–14660;
- 8bY. Wei, B. Ben-zvi, T. Diao, Angew. Chem. Int. Ed. 2021, 60, 9433–9438; Angew. Chem. 2021, 133, 9519–9524;
- 8cA. Dumoulin, J. K. Matsui, Á. Gutiérrez-Bonet, G. A. Molander, Angew. Chem. Int. Ed. 2018, 57, 6614–6618; Angew. Chem. 2018, 130, 6724–6728;
- 8dL. Xia, W. Fan, X.-A. Yuan, S. Yu, ACS Catal. 2021, 11, 9397–9406.
- 9For reviews, see:
- 9aC. E. I. Knappke, S. Grupe, D. Gärtner, M. Corpet, C. Gosmini, A. Jacobi von Wangelin, Chem. Eur. J. 2014, 20, 6828–6842;
- 9bD. A. Everson, D. J. Weix, J. Org. Chem. 2014, 79, 4793–4798;
- 9cT. Moragas, A. Correa, R. Martin, Chem. Eur. J. 2014, 20, 8242–8258;
- 9dD. J. Weix, Acc. Chem. Res. 2015, 48, 1767–1775;
- 9eJ. Gu, X. Wang, W. Xue, H. Gong, Org. Chem. Front. 2015, 2, 1411–1421;
- 9fX. Wang, Y. Dai, H. Gong, Top. Curr. Chem. 2016, 374, 43;
- 9gE. L. Lucas, E. R. Jarvo, Nat. Rev. Chem. 2017, 1, 0065;
- 9hE. Richmond, J. Moran, Synthesis 2018, 50, 499–513;
- 9iK. E. Poremba, S. E. Dibrell, S. E. Reisman, ACS Catal. 2020, 10, 8237–8246;
- 9jJ. Liu, Y. Ye, J. Sessler, H. Gong, Acc. Chem. Res. 2020, 53, 1833–1845.
- 10
- 10aJ. Liu, H. Gong, Org. Lett. 2018, 20, 7991–7995;
- 10bJ. Liu, C. Lei, H. Gong, Sci. China Chem. 2019, 62, 1492–1496.
- 11K. M. Arendt, A. G. Doyle, Angew. Chem. Int. Ed. 2015, 54, 9876–9880; Angew. Chem. 2015, 127, 10014–10018.
- 12J. W. Gillard, M. Israel, Tetrahedron Lett. 1981, 22, 513–516.
- 13T. T. Tsou, J. K. Kochi, J. Am. Chem. Soc. 1979, 101, 6319–6332.
- 14The relatively low yields of 26 and 27 were ascribed to the low reactivity of ortho-substituted aryl iodides. The sterically hindered ortho-substituted aryl iodides may lower the efficiency of the oxidative addition of the bulky Ni/L species. Indeed, we recovered a lot of the ortho-substituted aryl iodides in these reactions.
- 15Deposition Numbers 2093888 (for 14), 2093887 (for 27), and 2093886 (for 34) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures.
- 16J. Zhuo, Y. Zhang, Z. Li, C. Li, ACS Catal. 2020, 10, 3895–3903.
- 17
- 17aL. F. Bonnac, G.-Y. Gao, L. Chen, S. E. Patterson, H. N. Jayaram, K. W. Pankiewicz, Nucleosides Nucleotides Nucleic Acids 2007, 26, 1249–1253;
- 17bK. Krohn, H. Heins, K. Wielckens, J. Med. Chem. 1992, 35, 511–517.
- 18S. Biswas, D. J. Weix, J. Am. Chem. Soc. 2013, 135, 16192–16197.
- 19E. S. Simon, S. Grabowski, G. M. Whitesides, J. Org. Chem. 1990, 55, 1834–1841.
- 20
- 20aA. Zamyatina, S. Gronow, M. Puchberger, A. Graziani, A. Hofinger, P. Kosma, Carbohydr. Res. 2003, 338, 2571–2589;
- 20bA. Zamyatina, S. Gronow, C. Oertele, M. Puchberger, H. Brade, P. Kosma, Angew. Chem. Int. Ed. 2000, 39, 4150–4153;
10.1002/1521-3773(20001117)39:22<4150::AID-ANIE4150>3.0.CO;2-A CAS PubMed Web of Science® Google ScholarAngew. Chem. 2000, 112, 4322–4325.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.