Macrocycle Dynamics in a Branched [8]Catenane Controlled by Three Different Stimuli in Three Different Regions
Antony Wing Hung Ng
State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
Search for more papers by this authorSamuel Kin-Man Lai
State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
Search for more papers by this authorChi-Chung Yee
State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
Search for more papers by this authorCorresponding Author
Dr. Ho Yu Au-Yeung
State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
Search for more papers by this authorAntony Wing Hung Ng
State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
Search for more papers by this authorSamuel Kin-Man Lai
State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
Search for more papers by this authorChi-Chung Yee
State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
Search for more papers by this authorCorresponding Author
Dr. Ho Yu Au-Yeung
State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
Search for more papers by this authorAbstract
A branched [8]catenane from an efficient one-pot synthesis (72 % HPLC yield, 59 % isolated yield) featuring the simultaneous use of three kinds of templates and cucurbit[6]uril-mediated azide–alkyne cycloaddition (CBAAC) for ring-closing is reported. Design and assembly of the [8]catenane precursors are unexpectedly complex that can involve cooperating, competing and non-influencing interactions. Due to the branched structure, dynamics of the [8]catenane can be modulated in different extent by rigidifying/loosening the mechanical bonds at different regions by using solvent polarity, acid-base and metal ions as the stimuli. This work not only highlights the importance of understanding the delicate interplay of the weak and non-obvious supramolecular interactions in the synthesis of high-order [n]catenane, but also demonstrates a complex control of dynamics and flexibility for exploiting [n]catenanes applications.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202110200-sup-0001-misc_information.pdf6.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aC. J. Bruns, J. F. Stoddart, The Nature of the Mechanical Bond, Wiley, 2017, pp. 555–709;
- 1bJ. P. Sauvage, Acc. Chem. Res. 1998, 31, 611–619;
- 1cJ. P. Collin, C. Dietrich-Buchecker, P. Gaviña, M. C. Jimenez-Molero, J. P. Sauvage, Acc. Chem. Res. 2001, 34, 477–487;
- 1dV. Balzani, A. Credi, F. M. Raymo, J. F. Stoddart, Angew. Chem. Int. Ed. 2000, 39, 3348–3391;
10.1002/1521-3773(20001002)39:19<3348::AID-ANIE3348>3.0.CO;2-X CAS PubMed Web of Science® Google ScholarAngew. Chem. 2000, 112, 3484–3530;
- 1eE. R. Kay, D. A. Leigh, Pure Appl. Chem. 2008, 80, 17–29;
- 1fS. Erbas-Cakmak, D. A. Leigh, C. T. McTernan, A. L. Nussbaumer, Chem. Rev. 2015, 115, 10081–10206;
- 1gA. W. Heard, S. M. Goldup, ACS Cent. Sci. 2020, 6, 117–128.
- 2
- 2aL. F. Hart, J. E. Hertzog, P. M. Rauscher, B. W. Rawe, M. M. Tranquilli, S. J. Rowan, Nat. Rev. Mater. 2021, 6, 508–530;
- 2bC. A. Fustin, G. J. Clarkson, D. A. Leigh, F. Van Hoof, A. M. Jonas, C. Bailly, Macromolecules 2004, 37, 7884–7892;
- 2cW. Wang, H. Xing, Polym. Chem. 2018, 9, 2087–2091;
- 2dD. Muscat, W. Köhler, H. J. Räder, K. Martin, S. Mullins, B. Müller, K. Müllen, Y. Geerts, Macromolecules 1999, 32, 1737–1745;
- 2eC. A. Fustin, C. Bailly, G. J. Clarkson, P. De Groote, T. H. Galow, D. A. Leigh, D. Robertson, A. M. Z. Slawin, J. K. Y. Wong, J. Am. Chem. Soc. 2003, 125, 2200–2207;
- 2fH. Xing, Z. Li, W. Wang, P. Liu, J. Liu, Y. Song, Z. L. Wu, W. Zhang, F. Huang, CCS Chem. 2019, 1, 513–523.
- 3H. Xing, Z. Li, Z. L. Wu, F. Huang, Macromol. Rapid Commun. 2018, 39, 1700361.
- 4M. Zhang, G. De Bo, J. Am. Chem. Soc. 2020, 142, 5029–5033.
- 5
- 5aY. Okumura, K. Ito, Adv. Mater. 2001, 13, 485–487;
- 5bK. Ito, Polym. J. 2012, 44, 38–41.
- 6
- 6aA. Kruve, K. Caprice, R. Lavendomme, J. M. Wollschläger, S. Schoder, H. V. Schröder, J. R. Nitschke, F. B. L. Cougnon, C. A. Schalley, Angew. Chem. Int. Ed. 2019, 58, 11324–11328; Angew. Chem. 2019, 131, 11446–11450;
- 6bK. Caprice, A. Aster, F. B. L. Cougnon, T. Kumpulainen, Chem. Eur. J. 2020, 26, 1576–1587;
- 6cL. Zhu, J. Li, J. Yang, H. Y. Au-Yeung, Chem. Sci. 2020, 11, 13008–13014.
- 7
- 7aK. Zhu, G. Baggi, S. J. Loeb, Nat. Chem. 2018, 10, 625–630;
- 7bA. W. H. Ng, C.-C. Yee, H. Y. Au-Yeung, Angew. Chem. Int. Ed. 2019, 58, 17375–17382; Angew. Chem. 2019, 131, 17536–17543;
- 7cA. W. H. Ng, Y. H. Leung, H. Y. Au-Yeung, Org. Chem. Front. 2021, 8, 2182–2189.
- 8
- 8aG. Gil-Ramírez, D. A. Leigh, A. J. Stephens, Angew. Chem. Int. Ed. 2015, 54, 6110–6150; Angew. Chem. 2015, 127, 6208–6249;
- 8bH. Y. Au-Yeung, C.-C. Yee, A. W. H. Ng, K. Hu, Inorg. Chem. 2018, 57, 3475–3485;
- 8cN. H. Péreza, J. E. M. Lewis, Org. Biomol. Chem. 2020, 18, 6757–6780.
- 9For reports on [n≥6]catenanes, see:
- 9aF. Bitsch, C. O. Dietrich-Buchecker, A. K. Khemiss, J. P. Sauvage, A. Van Dorsselaer, J. Am. Chem. Soc. 1991, 113, 4023–4025;
- 9bD. B. Amabilino, P. R. Ashton, S. E. Boyd, J. Y. Lee, S. Menzer, J. F. Stoddart, D. J. Williams, Angew. Chem. Int. Ed. Engl. 1997, 36, 2070–2072; Angew. Chem. 1997, 109, 2160–2162;
- 9cM. J. Langton, J. D. Matichak, A. L. Thompson, H. L. Anderson, Chem. Sci. 2011, 2, 1897–1901;
- 9dS. P. Black, A. R. Stefankiewicz, M. M. J. Smulders, D. Sattler, C. A. Schalley, J. R. Nitschke, J. K. M. Sanders, Angew. Chem. Int. Ed. 2013, 52, 5749–5752; Angew. Chem. 2013, 125, 5861–5864;
- 9eS. Li, J. Huang, F. Zhou, T. R. Cook, X. Yan, Y. Ye, B. Zhu, B. Zheng, P. J. Stang, J. Am. Chem. Soc. 2014, 136, 5908–5911;
- 9fK. Wang, C.-C. Yee, H. Y. Au-Yeung, Chem. Sci. 2016, 7, 2787–2792.
- 10For reports on mixtures of [n]catenane:
- 10aQ. Wu, P. M. Rauscher, X. Lang, R. J. Wojtecki, J. J. De Pablo, M. J. A. Hore, S. J. Rowan, Science 2017, 358, 1434–1439;
- 10bS. Datta, Y. Kato, S. Higashiharaguchi, K. Aratsu, A. Isobe, T. Saito, D. D. Prabhu, Y. Kitamoto, M. J. Hollamby, A. J. Smith, R. Dalgliesh, N. Mahmoudi, L. Pesce, C. Perego, G. M. Pavan, S. Yagai, Nature 2020, 583, 400–405.
- 11
- 11aD. B. Amabilino, P. R. Ashton, A. S. Reder, N. Spencer, J. F. Stoddart, Angew. Chem. Int. Ed. Engl. 1994, 33, 1286–1290; Angew. Chem. 1994, 106, 1316–1319;
- 11bH. Iwamoto, S. Tafuku, Y. Sato, W. Takizawa, W. Katagiri, E. Tayama, E. Hasegawa, Y. Fukazawa, T. Haino, Chem. Commun. 2016, 52, 319–322.
- 12
- 12aS. Dasgupta, J. S. Wu, Org. Biomol. Chem. 2011, 9, 3504–3515;
- 12bT. Sawada, M. Yamagami, K. Ohara, K. Yamaguchi, M. Fujita, Angew. Chem. Int. Ed. 2016, 55, 4519–4522; Angew. Chem. 2016, 128, 4595–4598;
- 12cM. T. Nguyen, D. P. Ferris, C. Pezzato, Y. Wang, J. F. Stoddart, Chem 2018, 4, 2329–2344;
- 12dN. D. Colley, M. A. Nosiglia, L. Li, F. Amir, C. Chang, A. F. Greene, J. M. Fisher, R. Li, X. Li, J. C. Barnes, Inorg. Chem. 2020, 59, 10450–10460.
- 13
- 13aC. Lincheneau, B. Jean-Denis, T. Gunnlaugsson, Chem. Commun. 2014, 50, 2857–2860;
- 13bG. Zhang, G. Gil-Ramírez, A. Markevicius, C. Browne, I. J. Vitorica-Yrezabal, D. A. Leigh, J. Am. Chem. Soc. 2015, 137, 10437–10442;
- 13cC.-C. Yee, A. W. H. Ng, H. Y. Au-Yeung, Chem. Commun. 2019, 55, 6169–6172;
- 13dJ. J. Danon, D. A. Leigh, S. Pisano, A. Valero, I. J. Vitorica-Yrezabal, Angew. Chem. Int. Ed. 2018, 57, 13833–13837; Angew. Chem. 2018, 130, 14029–14033.
- 14W. L. Mock, T. A. Irra, J. P. Wepsiec, T. L. Manimaran, J. Org. Chem. 1983, 48, 3619–3620.
- 15
- 15aC. Ke, R. A. Smaldone, T. Kikuchi, H. Li, A. P. Davis, J. F. Stoddart, Angew. Chem. Int. Ed. 2013, 52, 381–387; Angew. Chem. 2013, 125, 399–405;
- 15bX. Hou, C. Ke, J. F. Stoddart, Chem. Soc. Rev. 2016, 45, 3766–3780;
- 15cC. Ke, N. L. Strutt, H. Li, X. Hou, K. J. Hartlieb, P. R. McGonigal, Z. Ma, J. Iehl, C. L. Stern, C. Cheng, Z. Zhu, N. A. Vermeulen, T. J. Meade, Y. Y. Botros, J. F. Stoddart, J. Am. Chem. Soc. 2013, 135, 17019–17030.
- 16A. W. H. Ng, C.-C. Yee, K. Wang, H. Y. Au-Yeung, Beilstein J. Org. Chem. 2018, 14, 1846–1853.
- 17
- 17aM. V. Rekharsky, Y. Inoue, Chem. Rev. 1998, 98, 1875–1918;
- 17bK. A. Connors, Chem. Rev. 1997, 97, 1325–1358.
- 18A. Harada, M. Okada, J. Li, M. Kamachi, Macromolecules 1995, 28, 8406–8411.
- 19
- 19aM. V. Rekharsky, H. Yamamura, M. Kawai, I. Osaka, R. Arakawa, A. Sato, Y. H. Ko, N. Selvapalam, K. Kim, Y. Inoue, Org. Lett. 2006, 8, 815–818;
- 19bC. Yang, Y. H. Ko, N. Selvapalam, Y. Origane, T. Mori, T. Wada, K. Kim, Y. Inoue, Org. Lett. 2007, 9, 4789–4792.
- 20
- 20aC. O. Dietrich-Buchecker, J. P. Sauvage, J. M. Kern, J. Am. Chem. Soc. 1984, 106, 3043–3045;
- 20bR. Hayashi, P. Slavík, Y. Mutoh, T. Kasama, S. Saito, J. Org. Chem. 2016, 81, 1175–1184;
- 20cY. Deng, S. K. M. Lai, L. Kong, H. Y. Au-Yeung, Chem. Commun. 2021, 57, 2931–2934.
- 21
- 21aX.-Q. Wang, W.-J. Li, W. Wang, H.-B. Yang, Chem. Commun. 2018, 54, 13303–13318;
- 21bS.-J. Rao, Q. Zhang, J. Mei, X.-H. Ye, C. Gao, Q.-C. Wang, D.-H. Qu, H. Tian, Chem. Sci. 2017, 8, 6777–6783;
- 21cJ. E. M. Lewis, J. Winn, L. Cera, S. M. Goldup, J. Am. Chem. Soc. 2016, 138, 16329–16336.
- 22M. Meyer, A.-M. Albrecht-Gary, C. O. Dietrich-Buchecker, J.-P. Sauvage, Inorg. Chem. 1999, 38, 2279–2287.
- 23M. W. Blaskie, D. R. McMillin, Inorg. Chem. 1980, 19, 3519–3522.
- 24The trifluoroacetate anion was introduced as trifluoroacetic acid during the MS analysis, see SI for details.
- 25
- 25aJ. Lagona, P. Mukhopadhyay, S. Chakrabarti, L. Isaacs, Angew. Chem. Int. Ed. 2005, 44, 4844–4870; Angew. Chem. 2005, 117, 4922–4949;
- 25bW. L. Mock, N. Y. Shih, J. Am. Chem. Soc. 1989, 111, 2697–2699;
- 25cK. Kim, Chem. Soc. Rev. 2002, 31, 96–107.
- 26D. Armspach, P. R. Ashton, C. P. Moore, N. Spencer, J. F. Stoddart, T. J. Wear, D. J. Williams, Angew. Chem. Int. Ed. Engl. 1993, 32, 854–858; Angew. Chem. 1993, 105, 944–948.
- 27
- 27aM. Fujita, F. Ibukuro, H. Hagihara, K. Ogura, Nature 1994, 367, 720–723;
- 27bN. Ponnuswamy, F. B. L. Cougnon, J. M. Clough, G. D. Pantoş, J. K. M. Sanders, Science 2012, 338, 783–785;
- 27cH. Y. Au-Yeung, G. D. Pantoş, J. K. M. Sanders, Proc. Natl. Acad. Sci. USA 2009, 106, 10466–10470;
- 27dK. Yamauchi, A. Miyawaki, Y. Takashima, H. Yamaguchi, A. Harada, J. Org. Chem. 2010, 75, 1040–1046.
- 28
- 28aD. Tuncel, H. B. Tiftik, B. Salih, J. Mater. Chem. 2006, 16, 3291–3296;
- 28bD. Tuncel, M. Katterle, Chem. Eur. J. 2008, 14, 4110–4116;
- 28cD. Tuncel, N. Cindir, U. Koldemir, J. Inclusion Phenom. Macrocyclic Chem. 2006, 55, 373–380;
- 28dW. L. Mock, J. A. Pierpont, J. Chem. Soc. Chem. Commun. 1990, 1509–1511;
- 28eJ. W. Lee, K. Kim, K. Kim, Chem. Commun. 2001, 1042–1043;
- 28fD. Tuncel, Ö. Özsar, H. B. Tiftik, B. Salih, Chem. Commun. 2007, 1369–1371.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.