Size-Dependent Activity and Selectivity of Atomic-Level Copper Nanoclusters during CO/CO2 Electroreduction
Dr. Weifeng Rong
Department of Chemistry and Shenzhen Grubbs institute, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055 P. R. China
School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorHaiyuan Zou
Department of Chemistry and Shenzhen Grubbs institute, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055 P. R. China
School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorWenjie Zang
Department of Materials Science and Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117574 Singapore
Search for more papers by this authorShibo Xi
Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, 627833 Singapore
Search for more papers by this authorDr. Shuting Wei
Department of Chemistry and Shenzhen Grubbs institute, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055 P. R. China
Search for more papers by this authorDr. Baihua Long
Department of Chemistry and Shenzhen Grubbs institute, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055 P. R. China
Search for more papers by this authorJunhui Hu
Department of Chemistry and Shenzhen Grubbs institute, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055 P. R. China
Search for more papers by this authorProf. Dr. Yongfei Ji
School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Lele Duan
Department of Chemistry and Shenzhen Grubbs institute, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055 P. R. China
Search for more papers by this authorDr. Weifeng Rong
Department of Chemistry and Shenzhen Grubbs institute, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055 P. R. China
School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorHaiyuan Zou
Department of Chemistry and Shenzhen Grubbs institute, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055 P. R. China
School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorWenjie Zang
Department of Materials Science and Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117574 Singapore
Search for more papers by this authorShibo Xi
Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, 627833 Singapore
Search for more papers by this authorDr. Shuting Wei
Department of Chemistry and Shenzhen Grubbs institute, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055 P. R. China
Search for more papers by this authorDr. Baihua Long
Department of Chemistry and Shenzhen Grubbs institute, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055 P. R. China
Search for more papers by this authorJunhui Hu
Department of Chemistry and Shenzhen Grubbs institute, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055 P. R. China
Search for more papers by this authorProf. Dr. Yongfei Ji
School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Lele Duan
Department of Chemistry and Shenzhen Grubbs institute, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055 P. R. China
Search for more papers by this authorAbstract
As a favorite descriptor, the size effect of Cu-based catalysts has been regularly utilized for activity and selectivity regulation toward CO2/CO electroreduction reactions (CO2/CORR). However, little progress has been made in regulating the size of Cu nanoclusters at the atomic level. Herein, the size-gradient Cu catalysts from single atoms (SAs) to subnanometric clusters (SCs, 0.5–1 nm) to nanoclusters (NCs, 1–1.5 nm) on graphdiyne matrix are readily prepared via an acetylenic-bond-directed site-trapping approach. Electrocatalytic measurements show a significant size effect in both the activity and selectivity toward CO2/CORR. Increasing the size of Cu nanoclusters will improve catalytic activity and selectivity toward C2+ productions in CORR. A high C2+ conversion rate of 312 mA cm−2 with the Faradaic efficiency of 91.2 % are achieved at −1.0 V versus reversible hydrogen electrode (RHE) over Cu NCs. The activity/selectivity-size relations provide a clear understanding of mechanisms in the CO2/CORR at the atomic level.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202011836-sup-0001-misc_information.pdf7.1 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. B. Ross, P. De Luna, Y. Li, C.-T. Dinh, D. Kim, P. Yang, E. H. Sargent, Nat. Catal. 2019, 2, 648–658.
- 2
- 2aT.-T. Zhuang, Y. Pang, Z.-Q. Liang, Z. Wang, Y. Li, C.-S. Tan, J. Li, C. T. Dinh, P. De Luna, P.-L. Hsieh, T. Burdyny, H.-H. Li, M. Liu, Y. Wang, F. Li, A. Proppe, A. Johnston, D.-H. Nam, Z.-Y. Wu, Y.-R. Zheng, A. H. Ip, H. Tan, L.-J. Chen, S.-H. Yu, S. O. Kelley, D. Sinton, E. H. Sargent, Nat. Catal. 2018, 1, 946–951;
- 2bY. Pang, J. Li, Z. Wang, C.-S. Tan, P.-L. Hsieh, T.-T. Zhuang, Z.-Q. Liang, C. Zou, X. Wang, P. De Luna, J. P. Edwards, Y. Xu, F. Li, C.-T. Dinh, M. Zhong, Y. Lou, D. Wu, L.-J. Chen, E. H. Sargent, D. Sinton, Nat. Catal. 2019, 2, 251–258;
- 2cW. Luc, X. Fu, J. Shi, J.-J. Lv, M. Jouny, B. H. Ko, Y. Xu, Q. Tu, X. Hu, J. Wu, Q. Yue, Y. Liu, F. Jiao, Y. Kang, Nat. Catal. 2019, 2, 423–430.
- 3R. Reske, H. Mistry, F. Behafarid, B. Roldan Cuenya, P. Strasser, J. Am. Chem. Soc. 2014, 136, 6978–6986.
- 4I. Merino-Garcia, J. Albo, A. Irabien, Nanotechnology 2018, 29, 014001.
- 5S. Nitopi, E. Bertheussen, S. B. Scott, X. Liu, A. K. Engstfeld, S. Horch, B. Seger, I. E. L. Stephens, K. Chan, C. Hahn, J. K. Nørskov, T. F. Jaramillo, I. Chorkendorff, Chem. Rev. 2019, 119, 7610–7672.
- 6D. Gao, R. M. Arán-Ais, H. S. Jeon, B. Roldan Cuenya, Nat. Catal. 2019, 2, 198–210.
- 7X. Liu, D. Astruc, Coord. Chem. Rev. 2018, 359, 112–126.
- 8
- 8aC. Liu, H. He, P. Zapol, L. A. Curtiss, Phys. Chem. Chem. Phys. 2014, 16, 26584–26599;
- 8bY. F. Bu, M. Zhao, G. X. Zhang, X. Zhang, W. Gao, Q. Jiang, ChemElectroChem 2019, 6, 1831–1837;
- 8cX. Bai, Q. Li, L. Shi, X. Niu, C. Ling, J. Wang, Small 2020, 16, 1901981.
- 9
- 9aQ. Tang, Y. Lee, D. Y. Li, W. Choi, C. W. Liu, D. Lee, D. E. Jiang, J. Am. Chem. Soc. 2017, 139, 9728–9736;
- 9bQ. Hu, Z. Han, X. Wang, G. Li, Z. Wang, X. Huang, H. Yang, X. Ren, Q. Zhang, J. Liu, C. He, Angew. Chem. Int. Ed. 2020, https://doi.org/10.1002/anie.202009277; Angew. Chem. 2020, https://doi.org/10.1002/ange.202009277.
- 10H. Qi, P. Yu, Y. Wang, G. Han, H. Liu, Y. Yi, Y. Li, L. Mao, J. Am. Chem. Soc. 2015, 137, 5260–5263.
- 11G. Li, Y. Li, H. Liu, Y. Guo, Y. Li, D. Zhu, Chem. Commun. 2010, 46, 3256–3258.
- 12
- 12aR. Sakamoto, N. Fukui, H. Maeda, R. Matsuoka, R. Toyoda, H. Nishihara, Adv. Mater. 2019, 31, 1804211;
- 12bC. Huang, Y. Li, N. Wang, Y. Xue, Z. Zuo, H. Liu, Y. Li, Chem. Rev. 2018, 118, 7744–7803.
- 13
- 13aY. Xue, B. Huang, Y. Yi, Y. Guo, Z. Zuo, Y. Li, Z. Jia, H. Liu, Y. Li, Nat. Commun. 2018, 9, 1460;
- 13bH. Yu, Y. Xue, B. Huang, L. Hui, C. Zhang, Y. Fang, Y. Liu, Y. Zhao, Y. Li, H. Liu, Y. Li, iScience 2019, 11, 31–41;
- 13cY. Gao, Z. Cai, X. Wu, Z. Lv, P. Wu, C. Cai, ACS Catal. 2018, 8, 10364–10374;
- 13dX. P. Yin, H. J. Wang, S. F. Tang, X. L. Lu, M. Shu, R. Si, T. B. Lu, Angew. Chem. Int. Ed. 2018, 57, 9382–9386; Angew. Chem. 2018, 130, 9526–9530.
- 14Y. Xue, J. Li, Z. Xue, Y. Li, H. Liu, D. Li, W. Yang, Y. Li, ACS Appl. Mater. Interfaces 2016, 8, 31083–31091.
- 15
- 15aY. Lu, W. Wei, W. Chen, Chin. Sci. Bull. 2012, 57, 41–47;
- 15bC. Lu, R. Fang, X. Chen, Adv. Mater. 2020, 32, 1906548.
- 16D. Ma, Z. Zeng, L. Liu, X. Huang, Y. Jia, J. Phys. Chem. C 2019, 123, 19066–19076.
- 17W. Ju, A. Bagger, G. P. Hao, A. S. Varela, I. Sinev, V. Bon, B. Roldan Cuenya, S. Kaskel, J. Rossmeisl, P. Strasser, Nat. Commun. 2017, 8, 944.
- 18J. Li, L. Zhong, L. Tong, Y. Yu, Q. Liu, S. Zhang, C. Yin, L. Qiao, S. Li, R. Si, J. Zhang, Adv. Funct. Mater. 2019, 29, 1905423.
- 19
- 19aH. Yang, Y. Wu, G. Li, Q. Lin, Q. Hu, Q. Zhang, J. Liu, C. He, J. Am. Chem. Soc. 2019, 141, 12717–12723;
- 19bF. Huang, Y. Deng, Y. Chen, X. Cai, M. Peng, Z. Jia, J. Xie, D. Xiao, X. Wen, N. Wang, Z. Jiang, H. Liu, D. Ma, Nat. Commun. 2019, 10, 4431;
- 19cY. Qu, Z. Li, W. Chen, Y. Lin, T. Yuan, Z. Yang, C. Zhao, J. Wang, C. Zhao, X. Wang, F. Zhou, Z. Zhuang, Y. Wu, Y. Li, Nat. Catal. 2018, 1, 781–786.
- 20M. Jouny, G. S. Hutchings, F. Jiao, Nat. Catal. 2019, 2, 1062–1070.
- 21M. Jouny, W. Luc, F. Jiao, Nat. Catal. 2018, 1, 748–755.
- 22L. Han, W. Zhou, C. Xiang, ACS Energy Lett. 2018, 3, 855–860.
- 23T. Cheng, H. Xiao, W. A. Goddard, 3rd, Proc. Natl. Acad. Sci. USA 2017, 114, 1795–1800.
- 24
- 24aD. Kim, C. S. Kley, Y. Li, P. Yang, Proc. Natl. Acad. Sci. USA 2017, 114, 10560–10565;
- 24bY.-G. Kim, A. Javier, J. H. Baricuatro, M. P. Soriaga, Electrocatalysis 2016, 7, 391–399;
- 24cY.-G. Kim, A. Javier, J. H. Baricuatro, D. Torelli, K. D. Cummins, C. F. Tsang, J. C. Hemminger, M. P. Soriaga, J. Electroanal. Chem. 2016, 780, 290–295;
- 24dY. Li, F. Cui, M. B. Ross, D. Kim, Y. Sun, P. Yang, Nano Lett. 2017, 17, 1312–1317;
- 24eP. Grosse, D. Gao, F. Scholten, I. Sinev, H. Mistry, B. Roldan Cuenya, Angew. Chem. Int. Ed. 2018, 57, 6192–6197; Angew. Chem. 2018, 130, 6300–6305;
- 24fD. Karapinar, N. T. Huan, N. Ranjbar Sahraie, J. Li, D. Wakerley, N. Touati, S. Zanna, D. Taverna, L. H. Galvão Tizei, A. Zitolo, F. Jaouen, V. Mougel, M. Fontecave, Angew. Chem. Int. Ed. 2019, 58, 15098–15103; Angew. Chem. 2019, 131, 15242–15247;
- 24gH. Jung, S. Y. Lee, C. W. Lee, M. K. Cho, D. H. Won, C. Kim, H. S. Oh, B. K. Min, Y. J. Hwang, J. Am. Chem. Soc. 2019, 141, 4624–4633;
- 24hM. Balamurugan, H. Y. Jeong, V. S. K. Choutipalli, J. S. Hong, H. Seo, N. Saravanan, J. H. Jang, K. G. Lee, Y. H. Lee, S. W. Im, V. Subramanian, S. H. Kim, K. T. Nam, Small 2020, 16, 2000955;
- 24iZ. Weng, Y. Wu, M. Wang, J. Jiang, K. Yang, S. Huo, X. F. Wang, Q. Ma, G. W. Brudvig, V. S. Batista, Y. Liang, Z. Feng, H. Wang, Nat. Commun. 2018, 9, 415;
- 24jH. Xu, D. Rebollar, H. He, L. Chong, Y. Liu, C. Liu, C.-J. Sun, T. Li, J. V. Muntean, R. E. Winans, D.-J. Liu, T. Xu, Nat. Energy 2020, 5, 623—632.
- 25L. Tang, X. Meng, D. Deng, X. Bao, Adv. Mater. 2019, 31, 1901996.
- 26
- 26aB. Eren, D. Zherebetskyy, L. L. Patera, C. H. Wu, H. Bluhm, C. Africh, L. Wang, G. A. Somorjai, M. Salmeron, Science 2016, 351, 475–478;
- 26bC. M. Gunathunge, X. Li, J. Li, R. P. Hicks, V. J. Ovalle, M. M. Waegele, J. Phys. Chem. C 2017, 121, 12337–12344.
- 27A. D. Handoko, F. Wei, Jenndy, B. S. Yeo, Z. W. Seh, Nat. Catal. 2018, 1, 922–934.
- 28X. Liu, P. Schlexer, J. Xiao, Y. Ji, L. Wang, R. B. Sandberg, M. Tang, K. S. Brown, H. Peng, S. Ringe, C. Hahn, T. F. Jaramillo, J. K. Nørskov, K. Chan, Nat. Commun. 2019, 10, 32.
- 29
- 29aA. Vasileff, C. Xu, Y. Jiao, Y. Zheng, S.-Z. Qiao, Chem 2018, 4, 1809–1831;
- 29bS. Back, J. Lim, N. Y. Kim, Y. H. Kim, Y. Jung, Chem. Sci. 2017, 8, 1090–1096;
- 29cA. Guan, Z. Chen, Y. Quan, C. Peng, Z. Wang, T.-K. Sham, C. Yang, Y. Ji, L. Qian, X. Xu, G. Zheng, ACS Energy Lett. 2020, 5, 1044–1053.
- 30
- 30aH. Mistry, F. Behafarid, R. Reske, A. S. Varela, P. Strasser, B. Roldan Cuenya, ACS Catal. 2016, 6, 1075–1080;
- 30bX. Wang, A. S. Varela, A. Bergmann, S. Kuhl, P. Strasser, ChemSusChem 2017, 10, 4642–4649.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.