Mn−O Covalency Governs the Intrinsic Activity of Co-Mn Spinel Oxides for Boosted Peroxymonosulfate Activation
Zhi-Yan Guo
Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, 230026 China
USTC-CityU Joint Advanced Research Center, Suzhou, 215123 China
Search for more papers by this authorChen-Xuan Li
Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, 230026 China
USTC-CityU Joint Advanced Research Center, Suzhou, 215123 China
Search for more papers by this authorMiao Gao
Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, 230026 China
USTC-CityU Joint Advanced Research Center, Suzhou, 215123 China
Search for more papers by this authorXiao Han
Department of Applied Chemistry, University of Science & Technology of China, Hefei, 230026 China
Search for more papers by this authorYing-Jie Zhang
Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, 230026 China
Search for more papers by this authorWen-Jun Zhang
Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
Search for more papers by this authorCorresponding Author
Prof. Wen-Wei Li
Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, 230026 China
USTC-CityU Joint Advanced Research Center, Suzhou, 215123 China
National Synchrotron Radiation Laboratory, University of Science & Technology of China, Hefei, 230026 China
Search for more papers by this authorZhi-Yan Guo
Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, 230026 China
USTC-CityU Joint Advanced Research Center, Suzhou, 215123 China
Search for more papers by this authorChen-Xuan Li
Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, 230026 China
USTC-CityU Joint Advanced Research Center, Suzhou, 215123 China
Search for more papers by this authorMiao Gao
Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, 230026 China
USTC-CityU Joint Advanced Research Center, Suzhou, 215123 China
Search for more papers by this authorXiao Han
Department of Applied Chemistry, University of Science & Technology of China, Hefei, 230026 China
Search for more papers by this authorYing-Jie Zhang
Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, 230026 China
Search for more papers by this authorWen-Jun Zhang
Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
Search for more papers by this authorCorresponding Author
Prof. Wen-Wei Li
Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, 230026 China
USTC-CityU Joint Advanced Research Center, Suzhou, 215123 China
National Synchrotron Radiation Laboratory, University of Science & Technology of China, Hefei, 230026 China
Search for more papers by this authorAbstract
Transition metal (TM)-based bimetallic spinel oxides can efficiently activate peroxymonosulfate (PMS) presumably attributed to enhanced electron transfer between TMs, but the existing model cannot fully explain the efficient TM redox cycling. Here, we discover a critical role of TM−O covalency in governing the intrinsic catalytic activity of Co3−xMnxO4 spinel oxides. Experimental and theoretical analysis reveals that the Co sites significantly raises the Mn valence and enlarges Mn−O covalency in octahedral configuration, thereby lowering the charge transfer energy to favor MnOh–PMS interaction. With appropriate MnIV/MnIII ratio to balance PMS adsorption and MnIV reduction, the Co1.1Mn1.9O4 exhibits remarkable catalytic activities for PMS activation and pollutant degradation, outperforming all the reported TM spinel oxides. The improved understandings on the origins of spinel oxides activity for PMS activation may inspire the development of more active and robust metal oxide catalysts.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202010828-sup-0001-misc_information.pdf2.7 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aB. C. Hodges, E. L. Cates, J.-H. Kim, Nat. Nanotechnol. 2018, 13, 642–650;
- 1bG. P. Anipsitakis, D. D. Dionysiou, Environ. Sci. Technol. 2004, 38, 3705–3712.
- 2
- 2aY. Wang, H. Sun, H. M. Ang, M. O. Tadé, S. Wang, Appl. Catal. B 2015, 164, 159–167;
- 2bJ. Hu, H. Dong, J. Qu, Z. Qiang, Water Res. 2017, 112, 1–8.
- 3
- 3aS. Sun, Y. Sun, Y. Zhou, S. Xi, X. Ren, B. Huang, H. Liao, L. P. Wang, Y. Du, Z. J. Xu, Angew. Chem. Int. Ed. 2019, 58, 6042–6047; Angew. Chem. 2019, 131, 6103–6108;
- 3bY. Zhou, S. Sun, J. Song, S. Xi, B. Chen, Y. Du, A. C. Fisher, F. Cheng, X. Wang, H. Zhang, Z. J. Xu, Adv. Mater. 2018, 30, 1802912.
- 4
- 4aJ. Deng, Y.-q. Cheng, Y.-a. Lu, J. C. Crittenden, S.-q. Zhou, N.-y. Gao, J. Li, Chem. Eng. J. 2017, 330, 505–517;
- 4bS. Zhang, Q. Fan, H. Gao, Y. Huang, X. Liu, J. Li, X. Xu, X. Wang, J. Mater. Chem. A 2016, 4, 1414–1422.
- 5L. Chen, D. Ding, C. Liu, H. Cai, Y. Qu, S. Yang, Y. Gao, T. Cai, Chem. Eng. J. 2018, 334, 273–284.
- 6
- 6aG.-X. Huang, C.-Y. Wang, C.-W. Yang, P.-C. Guo, H.-Q. Yu, technology, Environ. Sci. Technol. 2017, 51, 12611–12618;
- 6bY. Xu, J. Ai, H. Zhang, J. Hazard. Mater. 2016, 309, 87–96;
- 6cY. Yao, Y. Cai, G. Wu, F. Wei, X. Li, H. Chen, S. Wang, J. Hazard. Mater. 2015, 296, 128–137.
- 7J. Dai, Y. Zhu, Y. Yin, H. A. Tahini, D. Guan, F. Dong, Q. Lu, S. C. Smith, X. Zhang, H. J. S. Wang, Small 2019, 15, 1903120.
- 8R. P. Forslund, C. T. Alexander, A. M. Abakumov, K. P. Johnston, K. J. Stevenson, ACS Catal. 2019, 9, 2664–2673.
- 9
- 9aE. Lee, J.-H. Jang, Y.-U. Kwon, J. Power Sources 2015, 273, 735–741;
- 9bC. Li, X. Han, F. Cheng, Y. Hu, C. Chen, J. Chen, Nat. Commun. 2015, 6, 7345.
- 10
- 10aJ. B. Goodenough, A. L. Loeb, Phys. Rev. 1955, 98, 391;
- 10bJ. B. Goodenough, A. Wold, R. J. Arnott, N. Menyuk, Phys. Rev. 1961, 124, 373.
- 11J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough, Y. Shao-Horn, Science 2011, 334, 1383–1385.
- 12P. L. Zamora, F. A. Villamena, J. Phys. Chem. A 2012, 116, 7210–7218.
- 13G. S. Timmins, K. J. Liu, E. J. H. Bechara, Y. Kotake, H. M. Swartz, Free Radical Biol. Med. 1999, 27, 329–333.
- 14Y. Zhou, J. Jiang, Y. Gao, J. Ma, S.-Y. Pang, J. Li, X.-T. Lu, L.-P. Yuan, Environ. Sci. Technol. 2015, 49, 12941–12950.
- 15Z. Feng, W. T. Hong, D. D. Fong, Y.-L. Lee, Y. Yacoby, D. Morgan, Y. Shao-Horn, Acc. Chem. Res. 2016, 49, 966–973.
- 16W. Wang, L. Kuai, W. Cao, M. Huttula, S. Ollikkala, T. Ahopelto, A. P. Honkanen, S. Huotari, M. Yu, B. J. Geng, Angew. Chem. Int. Ed. 2017, 56, 14977–14981; Angew. Chem. 2017, 129, 15173–15177.
- 17
- 17aC. A. F. Vaz, D. Prabhakaran, E. Altman, V. E. Henrich, Phys. Rev. B 2009, 80, 155457;
- 17bC. Wang, H. Xie, S. Chen, B. Ge, D. Liu, C. Wu, W. Xu, W. Chu, G. Babu, P. M. Ajayan, L. Song, Adv. Mater. 2018, 30, 1802525.
- 18
- 18aJ. W. Murray, J. G. Dillard, R. Giovanoli, H. Moers, W. Stumm, Geochim. Cosmochim. Acta 1985, 49, 463–470;
- 18bV. R. Galakhov, M. Demeter, S. Bartkowski, M. Neumann, N. A. Ovechkina, E. Z. Kurmaev, N. I. Lobachevskaya, Y. M. Mukovskii, J. Mitchell, D. L. Ederer, Phys. Rev. B 2002, 65, 113102.
- 19B. L. Yang, S. F. Chan, W. S. Chang, Y. Z Chen, J. Catal. 1991, 130, 52–61.
- 20
- 20aE. Rios, J.-L. Gautier, G. Poillerat, P. Chartier, Electrochim. Acta 1998, 44, 1491–1497;
- 20bA. R. Naghash, J. Y. Lee, J. Power Sources 2001, 102, 68–73.
- 21S. Sun, Y. Sun, Y. Zhou, J. Shen, D. Mandler, R. Neumann, Z. J. Xu, Chem. Mater. 2019, 31, 8106–8111.
- 22Y. Zhang-Steenwinkel, J. Beckers, A. Bliek, Appl. Catal. A 2002, 235, 79–92.
- 23
- 23aT. Wang, Y. Sun, Y. Zhou, S. Sun, X. Hu, Y. Dai, S. Xi, Y. Du, Y. Yang, Z. J. Xu, ACS Catal. 2018, 8, 8568–8577;
- 23bY. Ren, L. Lin, J. Ma, J. Yang, J. Feng, Z. Fan, Appl. Catal. B 2015, 165, 572–578.
- 24J. Suntivich, H. A. Gasteiger, N. Yabuuchi, H. Nakanishi, J. B. Goodenough, Y. Shao-Horn, Nat. Chem. 2011, 3, 546–550.
- 25W. Yoon, M. Balasubramanian, K. Y. Chung, X. Yang, J. Mcbreen, C. P. Grey, D. A. Fischer, J. Am. Chem. Soc. 2005, 127, 17479–17487.
- 26S. Sun, Y. Sun, Y. Zhou, S. Xi, X. Ren, B. Huang, H. Liao, L. P. Wang, Y. Du, Z. J. Xu, Angew. Chem. Int. Ed. 2019, 58, 6042–6047; Angew. Chem. 2019, 131, 6103–6108.
- 27
- 27aT. Wu, S. Sun, J. Song, S. Xi, Y. Du, B. Chen, W. A. Sasangka, H. Liao, C. L. Gan, G. G. Scherer, Nat. Catal. 2019, 2, 763–772;
- 27bA. Grimaud, O. Diaz-Morales, B. Han, W. T. Hong, Y.-L. Lee, L. Giordano, K. A. Stoerzinger, M. T. Koper, Y. Shao-Horn, Nat. Chem. 2017, 9, 457.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.