Economizing on Precious Metals in Three-Way Catalysts: Thermally Stable and Highly Active Single-Atom Rhodium on Ceria for NO Abatement under Dry and Industrially Relevant Conditions**
Corresponding Author
Dr. Konstantin Khivantsev
Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99352 USA
Search for more papers by this authorCarlos Garcia Vargas
Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99352 USA
Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99163 USA
Search for more papers by this authorDr. Jinshu Tian
Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99352 USA
Search for more papers by this authorDr. Libor Kovarik
Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99352 USA
Search for more papers by this authorDr. Nicholas R. Jaegers
Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99352 USA
Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99163 USA
Search for more papers by this authorCorresponding Author
Dr. Janos Szanyi
Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99352 USA
Search for more papers by this authorCorresponding Author
Dr. Yong Wang
Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99352 USA
Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99163 USA
Search for more papers by this authorCorresponding Author
Dr. Konstantin Khivantsev
Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99352 USA
Search for more papers by this authorCarlos Garcia Vargas
Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99352 USA
Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99163 USA
Search for more papers by this authorDr. Jinshu Tian
Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99352 USA
Search for more papers by this authorDr. Libor Kovarik
Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99352 USA
Search for more papers by this authorDr. Nicholas R. Jaegers
Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99352 USA
Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99163 USA
Search for more papers by this authorCorresponding Author
Dr. Janos Szanyi
Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99352 USA
Search for more papers by this authorCorresponding Author
Dr. Yong Wang
Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99352 USA
Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99163 USA
Search for more papers by this authorA previous version of this manuscript has been deposited on a preprint server (https://doi.org/10.26434/chemrxiv.12086004.v1).
Abstract
We show for the first time that atomically dispersed Rh cations on ceria, prepared by a high-temperature atom-trapping synthesis, are the active species for the (CO+NO) reaction. This provides a direct link with the organometallic homogeneous RhI complexes capable of catalyzing the dry (CO+NO) reaction. The thermally stable Rh cations in 0.1 wt % Rh1/CeO2 achieve full NO conversion with a turn-over-frequency (TOF) of around 330 h−1 per Rh atom at 120 °C. Under dry conditions, the main product above 100 °C is N2 with N2O being the minor product. The presence of water promotes low-temperature activity of 0.1 wt % Rh1/CeO2. In the wet stream, ammonia and nitrogen are the main products above 120 °C. The uniformity of Rh ions on the support, allows us to detect the intermediates of (CO+NO) reaction via IR measurements on Rh cations on zeolite and ceria. We also show that NH3 formation correlates with the water gas shift (WGS) activity of the material and detect the formation of Rh hydride species spectroscopically.
Conflict of interest
We are filing for a patent
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202010815-sup-0001-misc_information.pdf1.6 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Wang, L. Olsson, Nat. Catal. 2019, 2, 566–570.
- 2Royal College of Paediatrics and Child Health. Every breath we take-the lifelong impact of air pollution, London, Royal College of Paediatrics and Child Health, 2016.
- 3M. V. Twigg, Catal. Today 2011, 163, 33–41.
- 4B. Harrison, A. F. Diwell, C. Hallett, Platinum Met. Rev. 1988, 32, 73–83.
- 5K. Taylor, Catal. Rev. Sci. Eng. 1993, 35, 457–481.
- 6P. Granger, V. I. Parvulescu, Chem. Rev. 2011, 111.
- 7J.-H. Kwak, R. G. Tonkyn, D. H. Kim, J. Szanyi, C. H. F. Peden, J. Catal. 2010, 275, 187–190.
- 8USDRIVE, Aftertreatment Protocols for Catalyst Characterization and Performance Evaluation, 2015 (https://cleers.org/low-temperature-protocols/).
- 9N. R. Jaegers, J. K. Lai, Y. He, E. Walter, D. A. Dixon, M. Vasiliu, Y. Chen, C. M. Wang, M. Y. Hu, K. T. Mueller, I. E. Wachs, Y. Wang, J. Z. Hu, Angew. Chem. Int. Ed. 2019, 58, 12609–12616; Angew. Chem. 2019, 131, 12739–12746.
- 10A. Sykkora, Rhodium prices soar on “demand-driven story”, Kitco news, 2020. https://www.kitco.com/news/2020-01-08/Rhodium-prices-soar-on-demand-driven-story.html.
- 11A. M. Beale, F. Gao, I. Lezcano-Gonzalez, C. H. F. Peden, J. Szanyi, Chem. Soc. Rev. 2015, 44, 7371–7405.
- 12A. Datye, Y. Wang, Natl. Sci. Rev. 2018, 5, 630–632.
- 13J. Jones, H. Xiong, A. T. DeLaRiva, E. J. Peterson, H. Pham, S. R. Challa, G. Qi, S. Oh, M. H. Wiebenga, X. I. Pereira Hernandez, Y. Wang, A. K. Datye, Science 2016, 353, 150–154.
- 14L. Nie, D. Mei, H. Xiong, B. Peng, Z. Ren, X. I. P. Hernandez, A. DeLaRiva, M. Wang, M. H. Engelhard, L. Kovarik, A. K. Datye, Y. Wang, Science 2017, 358, 1419.
- 15K. Khivantsev, A. Vityuk, H. A. Aleksandrov, G. N. Vayssilov, D. Blom, O. S. Alexeev, M. D. Amiridis, ACS Catal. 2017, 7, 5965–5982.
- 16H. Miessner, I. Burkhardt, D. Gutschick, A. Zecchina, C. Morterra in Structure and Reactivity of Surfaces (Eds.: G. Spoto, C. Morterra, A. Zecchina, G. Costa), Elsevier, Amsterdam, 1989, pp. 677–684.
- 17B. F. G. Johnson, S. Bhaduri, J. Chem. Soc. Chem. Commun. 1973, 650.
- 18B. L. Haymore, J. A. Ibers, J. Am. Chem. Soc. 1974, 96, 3325.
- 19S. Bhaduri, B. F. G. Johnson, C. J. Savory, J. A. Segal, R. H. Walter, J. Chem. Soc. Chem. Commun. 1974, 809.
- 20J. Reed, R. Eisenberg, Science 1974, 184, 568.
- 21C. D. Meyer, R. Eisenberg, J. Am. Chem. Soc. 1976, 98, 1364.
- 22J. A. Kaduk, T. H. Tulip, J. R. Budge, J. A. Ibers, J. Mol. Catal. 1981, 12, 239.
- 23V. Y. Prikhodko, J. E. Parks, J. A. Pihl, T. J. Toops, SAE International Journal of Engines 9 (2016-01-0934), 1289–1295.
- 24N. C. Nelson, M.-T. Nguyen, V.-A. Glezakou, R. Rousseau, J. Szanyi, Nat. Catal. 2019, https://doi.org/10.1038/s41929-019-0343-2.
- 25K. Ding, A. Gulec, A. M. Johnson, N. M. Schweitzer, G. D. Stucky, L. D. Marks, P. C. Stair, Science 2015, 350, 189–192.
- 26Q. Fu, H. Saltsburg, M. Flytzani-Stephanopoulos, Science 2003, 301, 935–938.
- 27K. Khivantsev, N. R. Jaegers, L. Kovarik, J. C. Hanson, F. F. Tao, Y. Tang, X. Zhang, I. Z. Koleva, H. A. Aleksandrov, G. N. Vayssilov, Y. Wang, F. Gao, J. Szanyi, Angew. Chem. Int. Ed. 2018, 57, 16672–16677; Angew. Chem. 2018, 130, 16914–16919.
- 28K. Khivantsev, A. Vityuk, H. A. Aleksandrov, G. N. Vayssilov, O. S. Alexeev, M. D. Amirdis, J. Phys. Chem. C 2015, 119, 17166–17181.
- 29N. R. Jaegers, K. Khivantsev, L. Kovarik, D. Klas, J. Z. Hu, Y. Wang, J. Szanyi, Catal. Sci. Technol. 2019, 9, 6570–6576.
- 30K. Khivantsev, PhD Thesis, University of South Carolina, 2015.
- 31R. Lang, T. Li, D. Matsumura, S. Miao, Y. Ren, Y.-T. Cui, Y. Tan, B. Qiao, L. Li, et al. Angew. Chem. Int. Ed. 2016, 55, 16054–16058; Angew. Chem. 2016, 128, 16288–16292; Angew. Chem. 2016, 128, 16288–16292.
- 32H. Jeong, O. Kwon, B.-S. Kim, J. Bae, S. Shin, H.-E. Kim, J. Kim, H. Lee, Nat. Catal. 2020, https://doi.org/10.1038/s41929-020-0427-z.
- 33Y. Gao, T. J. Emge, K. Krogh-Jespersen, A. S. Goldman, J. Am. Chem. Soc. 2018, 140, 2260–2264.
- 34K. Khivantsev, N. R. Jaegers, I. Z. Koleva, H. A. Aleksandrov, L. Kovarik, M. Engelhard, F. Gao, Y. Wang, G. N. Vayssilov, J. Szanyi, J. Phys. Chem. C 2020, 124, 309–321.
- 35R. J. Baird, R. C. Ku, P. Wynblatt, Surf. Sci. 1980, 97, 346–362.
- 36T. W. Root, L. D. Schmidt, G. B. Fisher, Surf. Sci. 1983, 134, 30–45.
- 37S. H. Oh, et al., J. Catal. 1986, 100, 360–376.
- 38S. H. Overbury, et al., J. Catal. 1999, 186, 296–309.
- 39K. Khivantsev, N. R. Jaegers, L. Kovarik, J. Tian, X. Isidro Pereira Hernandez, Y. Wang, J. Szanyi, Chemrxiv 2020, https://doi.org/10.26434/chemrxiv.12692264.
- 40M. J. Hülsey, B. Zhang, Z. Ma, H. Asakura, D. A. Do, W. Chen, T. Tanaka, P. Zhang, Z. Wu, N. Yan, Nat. Commun. 2019, 10, 1330.
- 41H. F. Van't Bilk, J. B. A. D. Van Zon, T. Huizinga, J. C. Vis, D. C. Konigsberger, R. Prins, J. Chem. Phys. 1983, 87, 2264.
- 42A. S. Goldman, C. R. Landis, A. Sen, Angew. Chem. Int. Ed. 2018, 57, 4460; Angew. Chem. 2018, 130, 4548.
- 43A. M. Wright, T. W. Hayton, Inorg. Chem. 2015, 54, 9330–9341.
- 44A. Srinivasan, C. Depcik, Catal. Rev. Sci. Eng. 2010, 52, 462–493.
- 45J. Amsler, B. B. Sarma, G. Agostini, G. Prieto, P. N. Plessow, F. Studt, J. Am. Chem. Soc. 2020, 142, 5087–5096.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.