Spidroin-Inspired, High-Strength, Loofah-Shaped Protein Fiber for Capturing Uranium from Seawater
Qiuhan Yu
State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Yihui Yuan
State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorLijuan Feng
State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 P. R. China
Search for more papers by this authorTiantian Feng
State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 P. R. China
Search for more papers by this authorWenyan Sun
State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Ning Wang
State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 P. R. China
Search for more papers by this authorQiuhan Yu
State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDr. Yihui Yuan
State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorLijuan Feng
State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 P. R. China
Search for more papers by this authorTiantian Feng
State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 P. R. China
Search for more papers by this authorWenyan Sun
State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Ning Wang
State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228 P. R. China
Search for more papers by this authorAbstract
The unique three-dimensional structure of spidrion determines the outstanding mechanical properties of the spider silk fiber. Inspired by the similarity of the three-dimensional structure of superb-uranyl binding protein (SUP) to that of spidroin, a dual-SUP (DSUP) chimeric protein fiber with high tensile strength is designed. The DSUP hydrogel fiber exhibits a loofah-shape structure by the cross-interaction of the protein nanofiber. Full exposure of abundant functional uranyl-binding sites in the stretchable loofah-shape hydrogel protein fiber give the DSUP fiber a groundbreaking uranium extraction capacity of 17.45 mg g−1 with an ultrashort saturation time of 3 days in natural seawater. This work reports the design of an adsorbent with ultrahigh uranium extraction capacity and explores a strategy for fabricating artificial high-strength functional non-spidroin protein fiber.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202007383-sup-0001-misc_information.pdf3.5 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C. W. Abney, R. T. Mayes, T. Saito, S. Dai, Chem. Rev. 2017, 117, 13935–14013.
- 2B. F. Parker, Z. Zhang, L. Rao, J. Arnold, Dalton Trans. 2018, 47, 639–644.
- 3
- 3aY. Yuan, Y. J. Yang, X. J. Ma, Q. H. Meng, L. L. Wang, S. Zhao, G. S. Zhu, Adv. Mater. 2018, 30, 1706507;
- 3bD. S. Sholl, R. P. Lively, Nature 2016, 532, 435;
- 3cS. Das, R. T. Mayes, Y. Oyola, C. J. Janke, L. J. Kuo, G. A. Gill, J. Wood, S. Dai, Ind. Eng. Chem. Res. 2016, 55, 4103–4109;
- 3dF. Endrizzi, L. Rao, Chem. Eur. J. 2014, 20, 14499–14506.
- 4
- 4aH. Zhang, W. Liu, A. Li, D. Zhang, X. Li, F. Zhai, L. Chen, L. Chen, Y. Wang, S. Wang, Angew. Chem. Int. Ed. 2019, 58, 16110–16114; Angew. Chem. 2019, 131, 16256–16260;
- 4bS. Das, W. Liao, M. F. Byers, C. Tsouris, C. J. Janke, R. T. Mayes, E. Schneider, L. Kuo, J. R. Wood, G. A. Gill, Ind. Eng. Chem. Res. 2016, 55, 4303–4312.
- 5
- 5aT. Zheng, Z. X. Yang, D. X. Gui, Z. Y. Liu, X. X. Wang, X. Dai, S. T. Liu, L. J. Zhang, Y. Gao, L. H. Chen, D. P. Sheng, Y. L. Wang, D. W. Juan, J. Q. Wang, R. H. Zhou, Z. F. Chai, T. E. Albrecht-Schmitt, S. A. Wang, Nat. Commun. 2017, 8, 15369;
- 5bW. Liu, X. Dai, Z. L. Bai, Y. L. Wang, Z. X. Yang, L. J. Zhang, L. Xu, L. H. Chen, Y. X. Li, D. X. Gui, D. W. Juan, J. Q. Wang, R. H. Zhou, Z. F. Chai, S. Wang, Environ. Sci. Technol. 2017, 51, 3911–3921;
- 5cY. Yuan, S. Zhao, J. Wen, D. Wang, X. Guo, L. Xu, X. Wang, N. Wang, Adv. Funct. Mater. 2019, 29, 1805380;
- 5dC. Liu, P. C. Hsu, J. Xie, J. Zhao, T. Wu, H. T. Wang, W. Liu, J. S. Zhang, S. Chu, Y. Cui, Nat. Energy 2017, 2, 17007;
- 5eQ. Sun, B. Aguila, L. D. Earl, C. W. Abney, L. Wojtas, P. K. Thallapally, S. Ma, Adv. Mater. 2018, 30, 1705479;
- 5fM. L. Carboni, C. W. Abney, S. Liu, W. Lin, Chem. Sci. 2013, 4, 2396.
- 6
- 6aI. Tabushi, Y. Kobuke, T. Nishiya, Nature 1979, 280, 665–666;
- 6bD. Wang, J. Song, J. Wen, Y. Yuan, Z. Liu, S. Lin, H. Wang, H. Wang, S. Zhao, X. Zhao, M. Fang, M. Lei, B. Li, N. Wang, X. Wang, H. Wu, Adv. Energy Mater. 2018, 8, 1802607.
- 7A. S. Ivanov, C. J. Leggett, B. F. Parker, Z. Zhang, J. Arnold, S. Dai, C. W. Abney, V. S. Bryantsev, L. Rao, Nat. Commun. 2017, 8, 1560.
- 8W. Luo, G. Xiao, F. Tian, J. J. Richardson, Y. Wang, J. Zhou, J. Guo, X. Liao, B. Shi, Energy Environ. Sci. 2019, 12, 607–614.
- 9
- 9aC. Bai, M. Zhang, B. Li, Y. Tian, S. Zhang, X. Zhao, Y. Li, L. Wang, L. Ma, S. Li, J. Hazard. Mater. 2015, 300, 368–377;
- 9bL. L. Wang, F. Luo, L. L. Dang, J. Q. Li, X. L. Wu, S. J. Liu, M. B. Luo, J. Mater. Chem. A 2015, 3, 13724–13730;
- 9cL. Y. Yuan, Y. Liu, W. Shi, Y. Lv, J. Lan, Y. Zhao, Z. Chai, Dalton Trans. 2011, 40, 7446–7453.
- 10C. Ma, J. Gao, D. Wang, Y. Yuan, J. Wen, B. Yan, S. Zhao, X. Zhao, Y. Sun, X. Wang, N. Wang, Adv. Sci. 2019, 6, 1900085.
- 11S. Das, Y. Oyola, R. T. Mayes, C. J. Janke, L. J. Kuo, G. Gill, J. R. Wood, S. Dai, Ind. Eng. Chem. Res. 2016, 55, 4110–4117.
- 12D. Wang, J. Song, S. Lin, J. Wen, C. Ma, Y. Yuan, M. Lei, X. Wang, N. Wang, H. Wu, Adv. Funct. Mater. 2019, 29, 1901009.
- 13Z. Lu, B. Mike, Z. Changsheng, O. U. U. Salih, Z. Liang, Z. Wen, C. J. Li, L. Jianzhao, M. P. Jensen, L. Luhua, Nat. Chem. 2014, 6, 236.
- 14S. Kou, Z. Yang, F. Sun, ACS Appl. Mater. Interfaces 2017, 9, 2035–2039
- 15
- 15aQ. Sun, B. Aguila, J. Perman, A. S. Ivanov, V. S. Bryantsev, L. D. Earl, C. W. Abney, L. Wojtas, S. Ma, Nat. Commun. 2018, 9, 1644;
- 15bY. Yuan, S. Feng, L. Feng, Q. Yu, T. Liu, N. Wang, Angew. Chem. Int. Ed. 2020, 59, 4262–4268; Angew. Chem. 2020, 132, 4292–4298.
- 16S.-M. Lee, E. Pippel, U. Gösele, C. Dresbach, Y. Qin, C. V. Chandran, T. Bräuniger, G. Hause, M. Knez, Science 2009, 324, 488–492.
- 17Y. Yuan, Q. Yu, J. Wen, C. Li, Z. Guo, X. Wang, N. Wang, Angew. Chem. Int. Ed. 2019, 58, 11785–11790; Angew. Chem. 2019, 131, 11911–11916.
- 18D. Porter, J. Guan, F. Vollrath, Adv. Mater. 2013, 25, 1275–1279.
- 19
- 19aZ. Lin, Q. Deng, X.-Y. Liu, D. Yang, Adv. Mater. 2013, 25, 1216–1220;
- 19bS. Margareta, G. Stefan, R. Anna, H. My, E. Wilhelm, H. Goran, J. Jan, Biomacromolecules 2007, 8, 1695;
- 19cM. Heim, D. Keerl, T. Scheibel, Angew. Chem. Int. Ed. 2009, 48, 3584–3596; Angew. Chem. 2009, 121, 3638–3650.
- 20Y. Li, J. Li, J. Sun, H. He, B. Li, C. Ma, K. Liu, H. Zhang, Angew. Chem. Int. Ed. 2020, 59, 8148–8152; Angew. Chem. 2020, 132, 8225–8229.
- 21M. Andersson, Q. Jia, A. Abella, X. Y. Lee, M. Landreh, P. Purhonen, H. Hebert, M. Tenje, C. V. Robinson, Q. Meng, G. R. Plaza, J. Johansson, A. Rising, Nat. Chem. Biol. 2017, 13, 262.
- 22Q. J. Wang, H. C. Schniepp, ACS Macro Lett. 2018, 7, 1364–1370.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.