A General Strategy for Hollow Metal-Phytate Coordination Complex Micropolyhedra Enabled by Cation Exchange
Meiling Chen
Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072 Shaanxi, China
Search for more papers by this authorChenxi Peng
Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072 Shaanxi, China
Search for more papers by this authorYaoquan Su
State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198 China
Search for more papers by this authorXue Chen
Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072 Shaanxi, China
Search for more papers by this authorProf. Yuezhou Zhang
Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072 Shaanxi, China
Search for more papers by this authorProf. Yu Wang
SZU-NUS Collaborative Innovation Center, ICL-2DMOST, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060 China
Search for more papers by this authorProf. Juanjuan Peng
State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198 China
Search for more papers by this authorDr. Qiang Sun
Center for Functional Materials, NUS (Suzhou) Research Institute, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorCorresponding Author
Prof. Xiaowang Liu
Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072 Shaanxi, China
Search for more papers by this authorCorresponding Author
Prof. Wei Huang
Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072 Shaanxi, China
Search for more papers by this authorMeiling Chen
Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072 Shaanxi, China
Search for more papers by this authorChenxi Peng
Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072 Shaanxi, China
Search for more papers by this authorYaoquan Su
State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198 China
Search for more papers by this authorXue Chen
Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072 Shaanxi, China
Search for more papers by this authorProf. Yuezhou Zhang
Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072 Shaanxi, China
Search for more papers by this authorProf. Yu Wang
SZU-NUS Collaborative Innovation Center, ICL-2DMOST, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060 China
Search for more papers by this authorProf. Juanjuan Peng
State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198 China
Search for more papers by this authorDr. Qiang Sun
Center for Functional Materials, NUS (Suzhou) Research Institute, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorCorresponding Author
Prof. Xiaowang Liu
Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072 Shaanxi, China
Search for more papers by this authorCorresponding Author
Prof. Wei Huang
Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072 Shaanxi, China
Search for more papers by this authorAbstract
The ability to incorporate functional metal ions (Mn+) into metal–organic coordination complexes adds remarkable flexibility in the synthesis of multifunctional organic–inorganic hybrid materials with tailorable electronic, optical, and magnetic properties. We report the cation-exchanged synthesis of a diverse range of hollow Mn+-phytate (PA) micropolyhedra via the use of hollow Co2+-PA polyhedral networks as templates at room temperature. The attributes of the incoming Mn+, namely Lewis acidity and ionic radius, control the exchange of the parent Co2+ ions and the degree of morphological deformation of the resulting hollow micropolyhedra. New functions can be obtained for both completely and partially exchanged products, as supported by the observation of Ln3+ (Ln3+=Tb3+, Eu3+, and Sm3+) luminescence from as-prepared hollow Ln3+-PA micropolyhedra after surface modification with dipicolinic acid as an antenna. Moreover, Fe3+- and Mn2+-PA polyhedral complexes were employed as magnetic contrast agents.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202005892-sup-0001-misc_information.pdf3 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ. Guo, B. L. Tardy, A. J. Christofferson, Y. Dai, J. J. Richardson, W. Zhu, M. Hu, Y. Ju, J. Cui, R. R. Dagastine, I. Yarovsky, F. Caruso, Nat. Nanotechnol. 2016, 11, 1105–1111;
- 1bH. Ejima, J. J. Richardson, K. Liang, J. P. Best, M. P. van Koeverden, G. K. Such, J. Cui, F. Caruso, Science 2013, 341, 154–157;
- 1cJ. Song, B. Zhou, H. Zhou, L. Wu, Q. Meng, Z. Liu, B. Han, Angew. Chem. Int. Ed. 2015, 54, 9399–9403; Angew. Chem. 2015, 127, 9531–9535;
- 1dT. Liu, M. Zhang, W. Liu, X. Zeng, X. Song, X. Yang, X. Z. Zhang, J. Feng, ACS Nano 2018, 12, 3917–3927;
- 1eC. Park, B. J. Yang, K. B. Jeong, C. B. Kim, S. Lee, B. C. Ku, Angew. Chem. Int. Ed. 2017, 56, 5485–5489; Angew. Chem. 2017, 129, 5577–5581.
- 2
- 2aM. A. Rahim, S. L. Kristufek, S. Pan, J. J. Richardson, F. Caruso, Angew. Chem. Int. Ed. 2019, 58, 1904–1927; Angew. Chem. 2019, 131, 1920–1945;
- 2bJ. O. Alben, P. P. Moh, F. G. Fiamingo, R. A. Altschuld, Proc. Natl. Acad. Sci. USA 1981, 78, 234–237;
- 2cW. Zhou, J. Wang, P. Ding, X. Guo, M. A. Cohen Stuart, J. Wang, Angew. Chem. Int. Ed. 2019, 58, 8494–8498; Angew. Chem. 2019, 131, 8582–8586.
- 3
- 3aH. Lee, S. M. Dellatore, W. M. Miller, P. B. Messersmith, Science 2007, 318, 426–430;
- 3bW. Li, Y. Zhang, Z. Xu, Q. Meng, Z. Fan, S. Ye, G. Zhang, Angew. Chem. Int. Ed. 2016, 55, 955–959; Angew. Chem. 2016, 128, 967–971.
- 4
- 4aR. Ameloot, F. Vermoortele, W. Vanhove, M. B. J. Roeffaers, B. F. Sels, D. E. De Vos, Nat. Chem. 2011, 3, 382–387;
- 4bJ. Chen, J. Li, J. Zhou, Z. Lin, F. Cavalieri, E. Czuba-Wojnilowicz, Y. Hu, A. Glab, Y. Ju, J. J. Richardson, F. Caruso, ACS Nano 2019, 13, 11653–11664;
- 4cH. Liang, J. Li, Y. He, W. Xu, S. Liu, Y. Li, Y. Chen, B. Li, ACS Biomater. Sci. Eng. 2016, 2, 317–325;
- 4dY. Dai, S. Cheng, Z. Wang, R. Zhang, Z. Yang, J. Wang, B. C. Yung, Z. Wang, O. Jacobson, C. Xu, Q. Ni, G. Yu, Z. Zhou, X. Chen, ACS Nano 2018, 12, 455–463.
- 5
- 5aJ. Cui, J. J. Richardson, M. Björnmalm, M. Faria, F. Caruso, Acc. Chem. Res. 2016, 49, 1139–1148;
- 5bL. Li, G. Zhang, Z. Su, Angew. Chem. Int. Ed. 2016, 55, 9093–9096; Angew. Chem. 2016, 128, 9239–9242;
- 5cQ. Dai, H. Geng, Q. Yu, J. Hao, J. Cui, Theranostics 2019, 9, 3170–3190.
- 6
- 6aJ. Nai, X. Lou, Adv. Mater. 2019, 31, 1706825;
- 6bB. Li, H. Zeng, Adv. Mater. 2019, 31, 1801104;
- 6cJ. Feng, Y. Yin, Adv. Mater. 2019, 31, 1802349;
- 6dH. Song, Y. Yang, J. Geng, Z. Gu, J. Zou, C. Yu, Adv. Mater. 2019, 31, 1801564;
- 6eZ. Cai, Z. Wang, J. Kim, Y. Yamauchi, Adv. Mater. 2019, 31, 1804903;
- 6fB. L. Tardy, J. J. Richardson, J. Guo, J. Lehtonen, M. Ago, O. J. Rojas, Green Chem. 2018, 20, 1335–1344;
- 6gH. Ejima, J. Richardson, F. Caruso, Polym. J. 2014, 46, 452–459.
- 7J. Guo, Y. Ping, H. Ejima, K. Alt, M. Meissner, J. J. Richardson, Y. Yan, K. Peter, D. von Elverfeldt, C. E. Hagemeyer, F. Caruso, Angew. Chem. Int. Ed. 2014, 53, 5546–5551; Angew. Chem. 2014, 126, 5652–5657.
- 8
- 8aL. De Trizio, M. Liberato, Chem. Rev. 2016, 116, 10852–10887;
- 8bS. Han, X. Qin, Z. An, Y. Zhu, L. L. Liang, Y. Han, W. Huang, X. Liu, Nat. Commun. 2016, 7, 13059;
- 8cM. Kim, J. F. Cahill, H. Fei, K. A. Prather, S. M. Cohen, J. Am. Chem. Soc. 2012, 134, 18082–18088;
- 8dS. Abednatanzi, P. G. Derakhshandeh, H. Depauw, F. X. Coudert, H. Vrielinck, P. Van Der Voort, K. Leus, Chem. Soc. Rev. 2019, 48, 2535–2565.
- 9X. You, H. Wu, R. Zhang, Y. Su, L. Cao, Q. Yu, J. Yuan, K. Xiao, M. He, Z. Jiang, Nat. Commun. 2019, 10, 4160.
- 10
- 10aX. Song, Y. Chen, M. Rong, Z. Xie, T. Zhao, Y. Wang, X. Chen, O. S. Wolfbeis, Angew. Chem. Int. Ed. 2016, 55, 3936–3941; Angew. Chem. 2016, 128, 4004–4009;
- 10bJ. A. Maga, J. Agric. Food Chem. 1982, 30, 1–9;
- 10cR. F. Irvine, M. J. Schell, Nat. Rev. Mol. Cell Biol. 2001, 2, 327–338.
- 11P. Sanchis, R. Rivera, F. Berga, R. Fortuny, M. Adrover, A. Costa-Bauza, F. Grases, L. Masmique, Sci. Rep. 2018, 8, 9619.
- 12
- 12aO. C. Gagné, F. C. Hawthorne, Acta Crystallogr. Sect. B 2017, 73, 956–961;
- 12bI. D. Brown, A. Skowron, J. Am. Chem. Soc. 1990, 112, 3403–3408.
- 13
- 13aX. Wang, Z. Na, D. Yin, C. Wang, Y. Wu, G. Huang, L. Wang, ACS Nano 2018, 12, 12238–12246;
- 13bW. Zhang, X. Jiang, Y. Zhao, A. Carné-Sánchez, V. Malgras, J. Kim, J. H. Kim, S. Wang, J. Liu, J.-S. Jiang, Y. Yamauchi, M. Hu, Chem. Sci. 2017, 8, 3538–3546;
- 13cH. Yang, S. J. Bradley, A. Chan, G. I. N. Waterhouse, T. Nann, P. E. Kruger, S. G. Telfer, J. Am. Chem. Soc. 2016, 138, 11872–11881.
- 14J. Torres, N. Veiga, J. S. Gancheff, S. Domínguez, A. Mederos, M. Sundberg, A. Sánchez, J. Castiglioni, A. Díaz, C. Kremer, J. Mol. Struct. 2008, 874, 77–88.
- 15
- 15aA. Bebot-Brigaud, C. Dange, N. Fauconnier, C. Gérard, J. Inorg. Biochem. 1999, 75, 71–78;
- 15bN. Veiga, I. Macho, K. Gómez, G. González, C. Kremer, J. Torres, J. Mol. Struct. 2015, 1098, 55–65.
- 16B. J. Beberwyck, Y. Surendranath, A. P. Alivisatos, J. Phys. Chem. C 2013, 117, 19759–19770.
- 17W. J. Evans, C. J. Martin, J. Inorg. Biochem. 1988, 32, 259–268.
- 18A. Swain, A. Sarkar, G. Rajaraman, Chem. Asian J. 2019, 14, 4056–4073.
- 19Y. Zhang, Inorg. Chem. 1982, 21, 3886–3889.
- 20
- 20aJ. Torres, S. Domínguez, M. F. Cerdá, G. Obal, A. Ms, R. F. Irvine, A. Díaz, C. Kremer, J. Inorg. Biochem. 2005, 99, 828–840;
- 20bN. Veiga, J. Torres, I. Macho, K. Gomez, G. Gonzalez, C. Kremer, Dalton Trans. 2014, 43, 16238–16251.
- 21E. G. Moore, A. P. S. Samuel, K. N. Raymond, Acc. Chem. Res. 2009, 42, 542–552.
- 22
- 22aL. An, C. Yan, X. Mu, C. Tao, Q. Tian, J. Lin, S. Yang, ACS Appl. Mater. Interfaces 2018, 10, 28483–28493;
- 22bF. Li, Z. Liang, J. Liu, J. Sun, X. Hu, M. Zhao, J. Liu, R. Bai, D. Kim, X. Sun, T. Hyeon, D. Ling, Nano Lett. 2019, 19, 4213–4220;
- 22cP. Zhang, Y. Hou, J. Zeng, Y. Li, Z. Wang, R. Zhu, T. Ma, M. Gao, Angew. Chem. Int. Ed. 2019, 58, 11088–11096; Angew. Chem. 2019, 131, 11205–11213.
- 23
- 23aY. K. Peng, C. W. Lai, C. L. Liu, H. C. Chen, Y. H. Hsiao, W. L. Liu, K. C. Tang, Y. Chi, J. K. Hsiao, K. E. Lim, H. E. Liao, J. J. Shyue, P. T. Chou, ACS Nano 2011, 5, 4177–4187;
- 23bJ. Wahsner, E. M. Gale, A. Rodríguez-Rodríguez, P. Caravan, Chem. Rev. 2019, 119, 957–1057.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.