Selective and Efficient Removal of Mercury from Aqueous Media with the Highly Flexible Arms of a BioMOF
Marta Mon
Instituto de Ciencia Molecular (ICMOL), Universitat de València, Paterna, 46980 València, Spain
Search for more papers by this authorProf. Dr. Francesc Lloret
Instituto de Ciencia Molecular (ICMOL), Universitat de València, Paterna, 46980 València, Spain
Search for more papers by this authorCorresponding Author
Dr. Jesús Ferrando-Soria
Instituto de Ciencia Molecular (ICMOL), Universitat de València, Paterna, 46980 València, Spain
Search for more papers by this authorDr. Carlos Martí-Gastaldo
Instituto de Ciencia Molecular (ICMOL), Universitat de València, Paterna, 46980 València, Spain
Search for more papers by this authorCorresponding Author
Dr. Donatella Armentano
Dipartimento di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, 87030 Rende, Cosenza, Italy
Search for more papers by this authorCorresponding Author
Dr. Emilio Pardo
Instituto de Ciencia Molecular (ICMOL), Universitat de València, Paterna, 46980 València, Spain
Search for more papers by this authorMarta Mon
Instituto de Ciencia Molecular (ICMOL), Universitat de València, Paterna, 46980 València, Spain
Search for more papers by this authorProf. Dr. Francesc Lloret
Instituto de Ciencia Molecular (ICMOL), Universitat de València, Paterna, 46980 València, Spain
Search for more papers by this authorCorresponding Author
Dr. Jesús Ferrando-Soria
Instituto de Ciencia Molecular (ICMOL), Universitat de València, Paterna, 46980 València, Spain
Search for more papers by this authorDr. Carlos Martí-Gastaldo
Instituto de Ciencia Molecular (ICMOL), Universitat de València, Paterna, 46980 València, Spain
Search for more papers by this authorCorresponding Author
Dr. Donatella Armentano
Dipartimento di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, 87030 Rende, Cosenza, Italy
Search for more papers by this authorCorresponding Author
Dr. Emilio Pardo
Instituto de Ciencia Molecular (ICMOL), Universitat de València, Paterna, 46980 València, Spain
Search for more papers by this authorAbstract
A robust and water-stable metal–organic framework (MOF), featuring hexagonal channels decorated with methionine residues (1), selectively captures toxic species such as CH3Hg+ and Hg2+ from water. 1 exhibits the largest Hg2+ uptake capacity ever reported for a MOF, decreasing the [Hg2+] and [CH3Hg+] concentrations in potable water from highly hazardous 10 ppm to the much safer values of 6 and 27 ppb, respectively. Just like with biological systems, the high-performance metal capture also involves a molecular recognition process. Both CH3Hg+ and Hg2+ are efficiently immobilized by specific conformations adopted by the flexible thioether “claws” decorating the pores of 1. This leads to very stable structural conformations reminiscent of those responsible for the biological activity of the enzyme mercury reductase (MR).
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201606015-sup-0001-misc_information.pdf1.1 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1World Health Organisation, Guidelines for Drinking-Water Quality, Fourth Edition, 2011.
- 2“https://mcgroup.co.uk/researches/mercury”.
- 3X. Lu et al., Environ. Sci. Technol. 2016, 50, 4366–4373.
- 4Z. Ci, X. Zhang, Y. Yin, J. Chen, S. Wang, Environ. Sci. Technol. 2016, 50, 2371–2380.
- 5M. Horvat, Trace Element Speciation for Environment, Food and Health, Royal Society of Chemistry, Cambridge, 2001.
- 6F. De Simone, C. N. Gencarelli, I. M. Hedgecock, N. Pirrone, Environ. Sci. Technol. 2016, 50, 5154–5162.
- 7M. Sadiq, Toxic Metal Chemistry in Marine Environments, Marcel Dekker, New York, 1992.
- 8Y. Lin, Y. Yang, Y. Li, L. Yang, X. Hou, X. Feng, C. Zheng, Environ. Sci. Technol. 2016, 50, 2468–2476.
- 9T. W. Clarkson, Trace Elements in Human and Animal Nutrition, Elsevier, Heidelberg, 1987, pp. 417–428.
10.1016/B978-0-08-092468-7.50016-8 Google Scholar
- 10N. Dave, M. Y. Chan, P.-J. J. Huang, B. D. Smith, J. Liu, J. Am. Chem. Soc. 2010, 132, 12668–12673.
- 11B. Li, Y. Zhang, D. Ma, Z. Shi, S. Ma, Nat. Commun. 2014, 5, 5537.
- 12M. Banerjee, R. Karri, K. S. Rawat, K. Muthuvel, B. Pathak, G. Roy, Angew. Chem. Int. Ed. 2015, 54, 9323–9327; Angew. Chem. 2015, 127, 9455–9459.
- 13S.-Y. Ding, M. Dong, Y.-W. Wang, Y.-T. Chen, H.-Z. Wang, C.-Y. Su, W. Wang, J. Am. Chem. Soc. 2016, 138, 3031–3037.
- 14Y. Oh, C. D. Morris, M. G. Kanatzidis, J. Am. Chem. Soc. 2012, 134, 14604–14608.
- 15K. S. Subrahmanyam, C. D. Malliakas, D. Sarma, G. S. Armatas, J. Wu, M. G. Kanatzidis, J. Am. Chem. Soc. 2015, 137, 13943–13948.
- 16G. Férey, Chem. Soc. Rev. 2008, 37, 191–214.
- 17J. R. Long, O. M. Yaghi, Chem. Soc. Rev. 2009, 38, 1213–1214.
- 18H. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, Science 2013, 341, 974.
- 19M. Eddaoudi, D. F. Sava, J. F. Eubank, K. Adil, V. Guillerm, Chem. Soc. Rev. 2015, 44, 228–249.
- 20Y. Cui, B. Li, H. He, W. Zhou, B. Chen, G. Qian, Acc. Chem. Res. 2016, 49, 483–493.
- 21J. Li, J. Sculley, H. Zhou, Chem. Rev. 2012, 112, 869–932.
- 22S. Yuan, Y.-P. Chen, J. Qin, W. Lu, X. Wang, Q. Zhang, M. Bosch, T.-F. Liu, X. Lian, H.-C. Zhou, Angew. Chem. Int. Ed. 2015, 54, 14696–14700; Angew. Chem. 2015, 127, 14909–14913.
- 23J. Ferrando-Soria et al., J. Am. Chem. Soc. 2012, 134, 15301–15304.
- 24Y. Inokuma, T. Arai, M. Fujita, Nat. Chem. 2010, 2, 780–783.
- 25S. Kitagawa, R. Matsuda, Coord. Chem. Rev. 2007, 251, 2490–2509.
- 26Q. Yang et al., Angew. Chem. Int. Ed. 2013, 52, 10316–10320; Angew. Chem. 2013, 125, 10506–10510.
- 27N. T. T. Nguyen, H. Furukawa, F. Gándara, H. T. Nguyen, K. E. Cordova, O. M. Yaghi, Angew. Chem. Int. Ed. 2014, 53, 10645–10648; Angew. Chem. 2014, 126, 10821–10824.
- 28J. He, K.-K. Yee, Z. Xu, M. Zeller, A. D. Hunter, S. S.-Y. Chui, C.-M. Che, Chem. Mater. 2011, 23, 2940–2947.
- 29K.-K. Yee, N. Reimer, J. Liu, S.-Y. Cheng, S.-M. Yiu, J. Weber, N. Stock, Z. Xu, J. Am. Chem. Soc. 2013, 135, 7795–7798.
- 30T. Liu, J.-X. Che, Y.-Z. Hu, X.-W. Dong, X.-Y. Liu, C.-M. Che, Chem. Eur. J. 2014, 20, 14090–14095.
- 31F. Luo, J. L. Chen, L. L. Dang, W. N. Zhou, H. L. Lin, J. Q. Li, S. J. Liu, M. B. Luo, J. Mater. Chem. A 2015, 3, 9616–9620.
- 32K.-K. Yee, Y.-L. Wong, M. Zha, R. Y. Adhikari, M. T. Tuominen, J. He, Z. Xu, Chem. Commun. 2015, 51, 10941–10944.
- 33A. Chakraborty, S. Bhattacharyya, A. Hazra, A. C. Ghosh, T. K. Maji, Chem. Commun. 2016, 52, 2831–2834.
- 34P. Lian et al., Biochemistry 2014, 53, 7211–7222.
- 35P. Li, J. A. Modica, A. J. Howarth, E. L. Vargas, P. Z. Moghadam, R. Q. Snurr, M. Mrksich, J. T. Hupp, O. K. Farha, ChemistrySelect 2016, 1, 154–169.
- 36A. C. McKinlay, R. E. Morris, P. Horcajada, G. Férey, R. Gref, P. Couvreur, C. Serre, Angew. Chem. Int. Ed. 2010, 49, 6260–6266; Angew. Chem. 2010, 122, 6400–6406.
- 37M. Mon, J. Ferrando-Soria, T. Grancha, F. R. Fortea-Pérez, J. Gascon, A. Leyva-Pérez, D. Armentano, E. Pardo, J. Am. Chem. Soc. 2016, 138, 7864–7867.
- 38T. Grancha, J. Ferrando-Soria, H.-C. Zhou, J. Gascon, B. Seoane, J. Pasán, O. Fabelo, M. Julve, E. Pardo, Angew. Chem. Int. Ed. 2015, 54, 6521–6525; Angew. Chem. 2015, 127, 6621–6625.
- 39T. Grancha, A. Acosta, J. Cano, J. Ferrando-Soria, B. Seoane, J. Gascon, J. Pasán, D. Armentano, E. Pardo, Inorg. Chem. 2015, 54, 10834–10840.
- 40M. Mon, A. Pascual-Álvarez, T. Grancha, J. Cano, J. Ferrando-Soria, F. Lloret, J. Gascon, J. Pasán, D. Armentano, E. Pardo, Chem. Eur. J. 2016, 22, 539–545.
- 41D. L. Rabenstein, Acc. Chem. Res. 1978, 11, 100–107.
- 42E. Pardo et al., Angew. Chem. Int. Ed. 2008, 47, 4211–4216; Angew. Chem. 2008, 120, 4279–4284.
- 43J. Rabone et al., Science 2010, 329, 1053–1057.
- 44C. Martí-Gastaldo et al., Nat. Chem. 2014, 6, 343–351.
- 45A. P. Katsoulidis et al., Angew. Chem. Int. Ed. 2014, 53, 193–198; Angew. Chem. 2014, 126, 197–202.
- 46J. E. Warren et al., Angew. Chem. Int. Ed. 2014, 53, 4592–4596; Angew. Chem. 2014, 126, 4680–4684.
- 47J. Vallejo, F. R. Fortea-Pérez, E. Pardo, S. Benmansour, I. Castro, J. Krzystek, D. Armentano, J. Cano, Chem. Sci. 2016, 7, 2286–2293.
- 48E. M. Nolan, S. J. Lippard, J. Am. Chem. Soc. 2007, 129, 5910–5918.
- 49T. Aridomi, K. Takamura, A. Igashira-Kamiyama, T. Kawamoto, T. Konno, Chem. Eur. J. 2008, 14, 7752–7755.
- 50S. Park, S. Y. Lee, S. S. Lee, Inorg. Chem. 2010, 49, 1238–1244.
- 51L. H. Gade, B. F. G. Johnson, J. Lewis, G. Conole, M. McPartlin, J. Chem. Soc. Dalton Trans. 1992, 192, 3249–3254.
- 52Preliminary results indicate that this selective recovery occurs even in the presence of other heavy metals such as Cd2+ and Pb2+.
- 53D. Bradshaw, A. Garai, J. Huo, Chem. Soc. Rev. 2012, 41, 2344–2381.
- 54X. Feng, G. E. Fryxell, L.-Q. Wang, A. Y. Kim, J. Liu, K. M. Kemner, Science 1997, 276, 923–926.
- 55S. Bag, P. N. Trikalitis, P. J. Chupas, G. S. Armatas, M. G. Kanatzidis, Science 2007, 317, 490–493.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.