Nickel-Catalyzed Reductive Amidation of Unactivated Alkyl Bromides
Eloisa Serrano
Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
Search for more papers by this authorCorresponding Author
Prof. Ruben Martin
Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluïs Companys 23, 08010 Barcelona, Spain
Search for more papers by this authorEloisa Serrano
Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
Search for more papers by this authorCorresponding Author
Prof. Ruben Martin
Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluïs Companys 23, 08010 Barcelona, Spain
Search for more papers by this authorAbstract
A user-friendly, nickel-catalyzed reductive amidation of unactivated primary, secondary, and tertiary alkyl bromides with isocyanates is described. This catalytic strategy offers an efficient synthesis of a wide range of aliphatic amides under mild conditions and with an excellent chemoselectivity profile while avoiding the use of stoichiometric and sensitive organometallic reagents.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201605162-sup-0001-misc_information.pdf4.9 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1For selected reviews on catalytic cross-coupling reactions of unactivated alkyl halides through nucleophile/electrophile regimes, see:
- 1aX. Hu, Chem. Sci. 2011, 2, 1867–1886;
- 1bR. Jana, T. P. Pathak, M. S. Sigman, Chem. Rev. 2011, 111, 1417–1492;
- 1cA. C. Frisch, M. Beller, Angew. Chem. Int. Ed. 2005, 44, 674–688; Angew. Chem. 2005, 117, 680–695;
- 1dM. R. Netherton, G. C. Fu, Adv. Synth. Catal. 2004, 346, 1525–1532;
- 1eD. J. Cárdenas, Angew. Chem. Int. Ed. 2003, 42, 384–387; Angew. Chem. 2003, 115, 398–401.
- 2For reviews on cross-electrophile couplings of organic halides, see:
- 2aJ. Gu, X. Wang, W. Xue, H. Gong, Org. Chem. Front. 2015, 2, 1411–1421;
- 2bD. J. Weix, Acc. Chem. Res. 2015, 48, 1767–1775;
- 2cT. Moragas, A. Correa, R. Martin, Chem. Eur. J. 2014, 20, 8242–8258;
- 2dC. E. I. Knappke, S. Grupe, D. Gärtner, M. Corpet, C. Gosmini, A. Jacobi von Wangelin, Chem. Eur. J. 2014, 20, 6828–6842.
- 3
- 3aS. Ozaki, Chem. Rev. 1972, 72, 457–496;
- 3bH. Ulrich, Chemistry and Technology of Isocyanates, Wiley, New York, 1996.
- 4For seminal stoichiometric studies of Ni0 complexes with isocyanates, see:
- 4aH. Hoberg, J. Organomet. Chem. 1988, 358, 507–517;
- 4bH. Hoberg, K. Summermann, A. Milchereit, J. Organomet. Chem. 1985, 288, 237–248;
- 4cH. Hoberg, E. Hernandez, Angew. Chem. Int. Ed. Engl. 1985, 24, 961–962; Angew. Chem. 1985, 97, 987–988;
- 4dJ. F. Villa, H. B. Powell, Inorg. Chim. Acta 1979, 32, 199–204.
- 5For selected Ni-catalyzed reactions of isocyanates with coupling partners other than organic halides, see:
- 5aT. Miura, M. Morimoto, M. Murakami, J. Am. Chem. Soc. 2010, 132, 15836–15838;
- 5bT. Ozawa, H. Horie, T. Kurahashi, S. Matsubara, Chem. Commun. 2010, 46, 8055–8057;
- 5cB. R. D′Souza, J. Louie, Org. Lett. 2009, 11, 4168–4171;
- 5dK. D. Schleicher, T. F. Jamison, Org. Lett. 2007, 9, 875–878;
- 5eH. A. Duong, M. Cross, J. Louie, J. Am. Chem. Soc. 2004, 126, 11438–11439.
- 6P. Braunstein, D. Nobel, Chem. Rev. 1989, 89, 1927–1945.
- 7
- 7aA. Correa, R. Martin, J. Am. Chem. Soc. 2014, 136, 7253–7725;
- 7bJ.-C. Hsieh, C.-H. Cheng, Chem. Commun. 2005, 4554–4556.
- 8
- 8a The Amide Linkage: Structural Significance in Chemistry, Biochemistry and Materials Science (Eds.: ), Wiley-Interscience, New York, 2000;
- 8bJ. S. Carey, D. Laffan, C. Thomson, M. T. Williams, Org. Biomol. Chem. 2006, 4, 2337–2347.
- 9For selected elegant reviews on amide bond formation, see:
- 9aV. R. Pattabiraman, J. W. Bode, Nature 2011, 480, 471–479;
- 9bC. L. Allen, J. M. Williams, Chem. Soc. Rev. 2011, 40, 3405–3415;
- 9cR. M. Lanigan, T. D. Sheppard, Eur. J. Org. Chem. 2013, 2013, 7453–7465;
- 9dE. Valeur, M. Bradley, Chem. Soc. Rev. 2009, 38, 606–631.
- 10For selected examples, see:
- 10aG. Zhang, B. Gao, H. Huang, Angew. Chem. Int. Ed. 2015, 54, 7657–7661; Angew. Chem. 2015, 127, 7767–7771;
- 10bK. Dong, X. Fang, R. Jackstell, G. Laurenczy, Y. Li, M. Beller, J. Am. Chem. Soc. 2015, 137, 6053–6058;
- 10cC. Jiménez-Rodriguez, A. A. Núñez-Magro, T. Seidensticker, G. R. Eastham, M. R. L. Furst, D. J. Cole-Hamilton, Catal. Sci. Technol. 2014, 4, 2332–2339;
- 10dH. Liu, N. Yan, P. J. Dyson, Chem. Commun. 2014, 50, 7848–7851;
- 10eX. Fang, R. Jackstell, M. Beller, Angew. Chem. Int. Ed. 2013, 52, 14089–14093; Angew. Chem. 2013, 125, 14339–14343;
- 10fT. Fukuyama, T. Inouye, I. Ryu, J. Organomet. Chem. 2007, 692, 685–690;
- 10gI. Ryu, K. Nagahara, N. Kambe, N. Sonoda, S. Kreimerman, M. Komatsu, Chem. Commun. 1998, 1953–1954, and references therein.
- 11Selected examples on using organometallic reagents with β-hydrogen atoms. For RMgX, see:
- 11aG. Schäfer, C. Matthey, J. W. Bode, Angew. Chem. Int. Ed. 2012, 51, 9173–9175; Angew. Chem. 2012, 124, 9307–9310. For RLi, see:
- 11bV. Pace, L. Castoldi, W. Holzer, Chem. Commun. 2013, 49, 8383–8385, and
- 11cI. Coldham, S. Dufour, T. F. N. Haxell, J. J. Patel, G. Sanchez-Jimenez, J. Am. Chem. Soc. 2006, 128, 10943–10951, and references therein.
- 12Recently, intermolecular catalytic hydrocarbamoylation reactions of noncyclic alkenes with formamides have been reported for forging aliphatic amide bonds possessing β-hydrogens. In all cases α-branched amides could not be achieved, obtaining exclusive linear selectivity. For examples, see:
- 12aT. Seidensticker, M. R. L. Furst, R. Frauenlob, J. Vondran, E. Paetzold, U. Kragl, A. J. Vorhold, ChemCatChem 2015, 7, 4085–4090;
- 12bY. Miyazaki, Y. Yamada, Y. Nakao, T. Hiyama, Chem. Lett. 2012, 41, 298–300;
- 12cS. Ko, H. Han, S. Chang, Org. Lett. 2003, 5, 2687–2690.
- 13For selected recent examples, see:
- 13aY. Liu, J. Cornella, R. Martin, J. Am. Chem. Soc. 2014, 136, 11212–11215;
- 13bT. Moragas, J. Cornella, R. Martin, J. Am. Chem. Soc. 2014, 136, 17702–17705;
- 13cX. Wang, Y. Liu, R. Martin, J. Am. Chem. Soc. 2015, 137, 6476–6479;
- 13dX. Wang, M. Nakajima, R. Martin, J. Am. Chem. Soc. 2015, 137, 8924–8927.
- 14P. D. Bailey, T. J. Mills, R. Pettecrew, R. A. Price, in Comprehensive Organic Functional Groups Transformation II, Vol. 5 (Eds.: ), Elsevier, Oxford, 2005, pp. 201–294.
10.1016/B0-08-044655-8/00096-9 Google Scholar
- 15See the Supporting information for details.
- 16L2 can be prepared in two steps and on a multigram scale following a slightly modified literature procedure: T. Kauffmann, J. König, A. Woltermann, Chem. Ber. 1976, 109, 3864–3868.
- 17For the early use of bipyridine and phenanthroline ligands in cross-coupling reactions of unactivated alkyl halides, see:
- 17aJ. Zhou, G. C. Fu, J. Am. Chem. Soc. 2004, 126, 1340–1341;
- 17bD. A. Powell, T. Maki, G. C. Fu, J. Am. Chem. Soc. 2005, 127, 510–511.
- 18Whereas L1 and L5 predominantly lead to homodimerization, significant amounts of β-hydride elimination and reduction products were observed when using L4.
- 19Note, however, that L3 turned out to be particularly efficient for aryl isocianates (see Scheme 3).
- 20Full conversion to β-hydride elimination products was observed for 1 a-I. The observed reactivity of 1 a-OTs is in line with the ability of these substrates to couple with other heterocumulenes (see Ref. [13 a]).
- 21Unlike the utilization of aliphatic isocyanates, equimolar amounts of aromatic isocyanates were critical to prevent the formation of considerable amounts of N-acylureas.
- 22[(TMEDA)Ni(o-tolyl)Cl] turned out to be particularly suited for the coupling of iPrNCO, avoiding dimerization or trimerization pathways.
- 23This hypothesis is reinforced by the significant inhibition observed when reacting 1 a with 2 a in the presence of radical scavengers such as TEMPO or BHT. The intermediacy of radical-type intermediates gains credence from the observation that the Ni-catalyzed reductive amidation of 6-bromohex-1-ene results in a linear relationship between acyclic and 5-exo-trig cyclization products at different Ni/L2 loadings.
- 24For remarkable exceptions, see:
- 24aX. Wang, S. Wang, W. Xue, H. Gong, J. Am. Chem. Soc. 2015, 137, 11562–11565;
- 24bC. Zhao, X. Jia, X. Wang, H. Gong, J. Am. Chem. Soc. 2014, 136, 17645–17651.
- 25Noncaged tertiary alkyl bromides provided traces of products.
- 26A. K. Mahalingam, X. Wu, M. Alterman, Tetrahedron Lett. 2006, 47, 3051–3053.
- 27E. Broughton, Environ. Health 2005, 4, 6.
- 28The isolation of Ni0(L2)2 proved to be particularly difficult. Stoichiometric studies were performed with Ni0(L3) and NiBr2(L3), as L3 proved superior for aromatic isocyanates.
- 29CCDC 1481428 (7) and CCDC 1481429 (8) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.
- 30β-hydride elimination, reduction, homodimerization, and the formation of N-acylureas account for the mass balance.
- 31At present, we cannot rule out a significant contribution dealing with NiI intermediates generated via single-electron transfer reduction mediated by Mn, see:
- 31aE. Duñach, A. P. Esteves, M. J. Medeiros, S. Olivero, New J. Chem. 2005, 29, 633–636;
- 31bT. Fujihara, Y. Horimoto, T. Mizoe, F. B. Sayyed, Y. Tani, J. Terao, S. Sakaki, Y. Tsuji, Org. Lett. 2014, 16, 4960–4963;
- 31cM. L. Nadal, J. Bosch, J. M. Vila, G. Klein, S. Ricart, J. M. Moretó, J. Am. Chem. Soc. 2005, 127, 10476–10477.
- 32For selected comproportionation events en route to NiI species, see:
- 32aJ. Cornella, E. Gómez-Bengoa, R. Martin, J. Am. Chem. Soc. 2013, 135, 1997–2009;
- 32bA. Velian, S. Lin, A. J. M. Miller, M. W. Day, T. Agapie, J. Am. Chem. Soc. 2010, 132, 6296–6297;
- 32cV. B. Phapale, E. Buñuel, M. García-Iglesias, D. J. Cárdenas, Angew. Chem. Int. Ed. 2007, 46, 8790–8795; Angew. Chem. 2007, 119, 8946–8951;
- 32dG. D. Jones, J. L. Martin, C. McFarland, O. R. Allen, R. E. Hall, A. D. Haley, R. J. Brandon, T. Konovalova, P. J. Desrochers, P. Pulay, D. A. Vicic, J. Am. Chem. Soc. 2006, 128, 13175–13183.
- 33NiI species have been shown to rapidly react with heterocumulenes other than RNCO, see: F. S. Menges, S. M. Craig, N. Tötsch, A. Bloomfield, S. Ghosh, H.-J. Krüger, M. A. Johnson, Angew. Chem. Int. Ed. 2016, 55, 1282–1285; Angew. Chem. 2016, 128, 1304–1307.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.