Catechols as Sources of Hydrogen Atoms in Radical Deiodination and Related Reactions
Dr. Guillaume Povie
Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
Search for more papers by this authorDr. Leigh Ford
Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
Search for more papers by this authorDr. Davide Pozzi
Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
Search for more papers by this authorValentin Soulard
Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
Search for more papers by this authorDr. Giorgio Villa
Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
Search for more papers by this authorCorresponding Author
Prof. Dr. Philippe Renaud
Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
Search for more papers by this authorDr. Guillaume Povie
Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
Search for more papers by this authorDr. Leigh Ford
Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
Search for more papers by this authorDr. Davide Pozzi
Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
Search for more papers by this authorValentin Soulard
Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
Search for more papers by this authorDr. Giorgio Villa
Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
Search for more papers by this authorCorresponding Author
Prof. Dr. Philippe Renaud
Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
Search for more papers by this authorAbstract
When used with trialkylboranes, catechol derivatives, which are low-cost and low toxicity, are valuable hydrogen atom donors for radical chain reactions involving alkyl iodides and related radical precursors. The system 4-tert-butylcatechol/triethylborane has been used to reduce a series of secondary and tertiary iodides, a xanthate, and a thiohydroxamate ester. Catechol derivatives are right in the optimal kinetic window for synthetic applications, as demonstrated by highly efficient radical cyclizations. Cyclizations leading to the formation of quaternary centers can be performed in an all-at-once process (no slow addition of the hydrogen atom donor) at standard concentrations. The H-donor properties of catechol derivatives can be fine-tuned by changing their substitution pattern. In slow radical cyclization processes, an enhanced ratio of cyclized/uncyclized products was obtained by using 3-methoxycatechol instead of 4-tert-butylcatechol.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201604950-sup-0001-misc_information.pdf2 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aEncyclopedia of Radicals In Chemistry Biology and Materials, Vol. 1–4 (Eds.: ), Wiley, New York, 2012;
- 1b Radicals in Organic Synthesis, Vol. 1, 2 (Eds.: ), Wiley-VCH, Weinheim, 2001.
- 2
- 2aH. Jasch, M. R. Heinrich in Encyclopedia of Radicals in Chemistry, Biology and Materials, Vol. 2 (Eds.: ), Wiley, New York, 2012, pp. 529–560;
- 2bW. P. Neumann, Synthesis 1987, 665–683.
- 3
- 3aB. Giese, J. Dickhaut, C. Chatgilialoglu in Handbook of Reagents for Organic Synthesis: Reagents for Silicon-Mediated Organic Synthesis, Vol. 2 (Eds.: ), Wiley, New York, 2011, pp. 747–754;
- 3bC. Chatgilialoglu, Chem. Eur. J. 2008, 14, 2310–2320.
- 4H. Yorimitsu, K. Oshima, Inorg. Chem. Commun. 2005, 8, 131–142.
- 5J. C. Walton, A. Studer, Acc. Chem. Res. 2005, 38, 794–802.
- 6F. Dénès, M. Pichowicz, G. Povie, P. Renaud, Chem. Rev. 2014, 114, 2587–2693.
- 7
- 7aT. Kawamoto, I. Ryu, Org. Biomol. Chem. 2014, 12, 9733–9742;
- 7bS.-H. Ueng, M. Makhlouf Brahmi, E. Derat, L. Fensterbank, E. Lacôte, M. Malacria, D. P. Curran, J. Am. Chem. Soc. 2008, 130, 10082–10083;
- 7cA. Solovyev, S.-H. Ueng, J. Monot, L. Fensterbank, M. Malacria, E. Lacôte, D. P. Curran, Org. Lett. 2010, 12, 2998–3001.
- 8
- 8aD. Leca, L. Fensterbank, E. Lacôte, M. Malacria, Chem. Soc. Rev. 2005, 34, 858–865;
- 8bV. V. Popik, A. G. Wright, T. A. Khan, J. A. Murphy in e-EROS Encyclopedia of Reagents for Organic Synthesis, Wiley, 2001, DOI: 10.1002/047084289X.rh047084075.
- 9G. Povie, P. Renaud, Chimia 2013, 67, 250–252.
- 10
- 10aA. Parsons, Chem. Br. 2002, 38, 42–44;
- 10bA. Studer, S. Amrein, Synthesis 2002, 835–849;
- 10cA. Gansäuer, L. Shi, M. Otte, I. Huth, A. Rosales, I. Sancho-Sanz, N. M. Padial, J. E. Oltra in Radicals in Synthesis III (Eds.: ), Springer, Berlin, Heidelberg, 2012, pp. 93–120.
- 11C. Chatgilialoglu, K. U. Ingold, J. C. Scaiano, J. Am. Chem. Soc. 1981, 103, 7739–7742.
- 12
- 12aM. R. Medeiros, L. N. Schacherer, D. A. Spiegel, J. L. Wood, Org. Lett. 2007, 9, 4427–4429;
- 12bD. A. Spiegel, K. Wiberg, L. N. Schacherer, M. R. Medeiros, J. L. Wood, J. Am. Chem. Soc. 2005, 127, 12513–12515;
- 12cF. Allais, J. Boivin, V. T. Nguyen, Beilstein J. Org. Chem. 2007, 3, 46; see also No. 45 and 47.
- 13Similar water activation have been observed in water–titanium(III) complexes: J. M. Cuerva, A. G. Campana, J. Justicia, A. Rosales, J. L. Oller-Lopez, R. Robles, D. J. Cardenas, E. Bunuel, J. E. Oltra, Angew. Chem. Int. Ed. 2006, 45, 5522–5526; Angew. Chem. 2006, 118, 5648–5652.
- 14D. Pozzi, E. M. Scanlan, P. Renaud, J. Am. Chem. Soc. 2005, 127, 14204–14205.
- 15
- 15aJ. Jin, M. Newcomb, J. Org. Chem. 2007, 72, 5098–5103;
- 15bJ. Jin, M. Newcomb, J. Org. Chem. 2008, 73, 4740–4742;
- 15cG. Povie, M. Marzorati, P. Bigler, P. Renaud, J. Org. Chem. 2013, 78, 1553–1558;
- 15dW. Tantawy, H. Zipse, Eur. J. Org. Chem. 2007, 5817–5820.
- 16
- 16aG. Villa, G. Povie, P. Renaud, J. Am. Chem. Soc. 2011, 133, 5913–5920;
- 16bG. Povie, G. Villa, L. Ford, D. Pozzi, C. H. Schiesser, P. Renaud, Chem. Commun. 2010, 46, 803–805.
- 17
- 17aP. A. MacFaul, K. U. Ingold, J. Lusztyk, J. Org. Chem. 1996, 61, 1316–1321;
- 17bD. W. Snelgrove, J. Lusztyk, J. Banks, P. Mulder, K. U. Ingold, J. Am. Chem. Soc. 2001, 123, 469–477;
- 17cL. Barclay, C. Edwards, M. Vinqvist, J. Am. Chem. Soc. 1999, 121, 6226–6231.
- 18
- 18aS. Kim, C. J. Lim, S.-E. Song, H.-Y. Kang, Chem. Commun. 2001, 1410;
- 18bS. Kim, C. J. Lim, S.-E. Song, H.-Y. Kang, Synlett 2001, 688.
- 19M. C. Foti, K. U. Ingold, J. Lusztyk, J. Am. Chem. Soc. 1994, 116, 9440–9447.
- 20
- 20aG. Povie, A.-T. Tran, D. Bonnaffé, J. Habegger, Z. Hu, C. Le Narvor, P. Renaud, Angew. Chem. Int. Ed. 2014, 53, 3894–3898; Angew. Chem. 2014, 126, 3975–3979.
- 21The characterization of compounds 3 and 4 has been reported elsewhere: see Ref. [20].
- 22M. Newcomb, R. M. Sanchez, J. Kaplan, J. Am. Chem. Soc. 1987, 109, 1195–1199.
- 23G. Villa, Ph.D. Dissertation Thesis, University of Bern, 2010.
- 24D. P. Curran, T. R. McFadden, J. Am. Chem. Soc. 2016, 138, 7741–7752.
- 25X. J. Salom-Roig, F. Dénès, P. Renaud, Synthesis 2004, 1903–1928.
- 26A. L. J. Beckwith, S. A. Glover, Aust. J. Chem. 1987, 40, 157–173.
- 27Under standard reaction conditions, minor quantities of allylic alcohol were isolated arising from the cleavage of the acetal. The use of NaHCO3 as a heterogeneous base completely suppressed this side reaction.
- 28
- 28aK. Fujita, T. Nakamura, H. Yorimitsu, K. Oshima, J. Am. Chem. Soc. 2001, 123, 3137–3138;
- 28bK. Takami, S. Mikami, H. Yorimitsu, H. Shinokubo, K. Oshima, Tetrahedron 2003, 59, 6627–6635.
- 29R. Amorati, S. Menichetti, E. Mileo, G. F. Pedulli, C. Viglianisi, Chem. Eur. J. 2009, 15, 4402–4410.
- 30M. C. Foti, L. R. C. Barclay, K. U. Ingold, J. Am. Chem. Soc. 2002, 124, 12881–12888.
- 31
- 31aJ. M. Watson, US patent 4061545, 1977;
- 31bJ. M. Watson, J. R. Butler, K. A. Mikkelson, US patent 4466904, 1984;
- 31cJ. T. Merril, US patent 6960279, 2005.
- 32Additional information on the uses of TBC can be found in the summary of data for chemical selection from the National Toxicology Program, https://ntp.niehs.nih.gov/testing/status/background/execsumm/b/butylcatechol/index.html, [accessed: 9-June-2016].
- 33National Toxicology Program, Toxicity Report Series, Number 70, https://ntp.niehs.nih.gov/ntp/htdocs/st_rpts/tox070.pdf [accessed: 09 June 2016].
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.