A Microkinetic Model of Calcite Step Growth
Corresponding Author
Prof. Dr. M. P. Andersson
Nano-Science Center, Department of Chemistry, University of Copenhagen, Denmark
Search for more papers by this authorDr. S. Dobberschütz
Nano-Science Center, Department of Chemistry, University of Copenhagen, Denmark
Search for more papers by this authorDr. K. K. Sand
Nano-Science Center, Department of Chemistry, University of Copenhagen, Denmark
Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352 USA
Search for more papers by this authorDr. D. J. Tobler
Nano-Science Center, Department of Chemistry, University of Copenhagen, Denmark
Search for more papers by this authorProf. Dr. J. J. De Yoreo
Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352 USA
Departments of Materials Science and Engineering and of Chemistry, University of Washington, Seattle, WA, 98195 USA
Search for more papers by this authorProf. Dr. S. L. S. Stipp
Nano-Science Center, Department of Chemistry, University of Copenhagen, Denmark
Search for more papers by this authorCorresponding Author
Prof. Dr. M. P. Andersson
Nano-Science Center, Department of Chemistry, University of Copenhagen, Denmark
Search for more papers by this authorDr. S. Dobberschütz
Nano-Science Center, Department of Chemistry, University of Copenhagen, Denmark
Search for more papers by this authorDr. K. K. Sand
Nano-Science Center, Department of Chemistry, University of Copenhagen, Denmark
Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352 USA
Search for more papers by this authorDr. D. J. Tobler
Nano-Science Center, Department of Chemistry, University of Copenhagen, Denmark
Search for more papers by this authorProf. Dr. J. J. De Yoreo
Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352 USA
Departments of Materials Science and Engineering and of Chemistry, University of Washington, Seattle, WA, 98195 USA
Search for more papers by this authorProf. Dr. S. L. S. Stipp
Nano-Science Center, Department of Chemistry, University of Copenhagen, Denmark
Search for more papers by this authorAbstract
In spite of decades of research, mineral growth models based on ion attachment and detachment rates fail to predict behavior beyond a narrow range of conditions. Here we present a microkinetic model that accurately reproduces calcite growth over a very wide range of published experimental data for solution composition, saturation index, pH and impurities. We demonstrate that polynuclear complexes play a central role in mineral growth at high supersaturation and that a classical complexation model is sufficient to reproduce measured rates. Dehydration of the attaching species, not the mineral surface, is rate limiting. Density functional theory supports our conclusions. The model provides new insights into the molecular mechanisms of mineral growth that control biomineralization, mineral scaling and industrial material synthesis.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201604357-sup-0001-misc_information.pdf8.3 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H. H. Teng, P. M. Dove, J. J. DeYoreo, Geochim. Cosmochim. Acta 1999, 63, 2507–2512.
- 2K. J. Davis, P. M. Dove, J. J. De Yoreo, Science 2000, 290, 1134–1137.
- 3K. Larsen, K. Bechgaard, S. L. S. Stipp, Geochim. Cosmochim. Acta 2010, 74, 2099–2109.
- 4E. Ruiz-Agudo, C. V. Putnis, C. Rodriguez-Navarro, A. Putnis, Geochim. Cosmochim. Acta 2011, 75, 284–296.
- 5J. N. Bracco, M. C. Grantham, A. G. Stack, Cryst. Growth Des. 2012, 12, 3540–3548.
- 6M. Hong, H. H. Teng, Geochim. Cosmochim. Acta 2014, 141, 228–239.
- 7J. W. Zhang, G. H. Nancollas, J. Colloid Interface Sci. 1998, 200, 131–145.
- 8H. H. Teng, P. M. Dove, C. A. Orme, J. J. De Yoreo, Science 1998, 282, 724–727.
- 9A. G. Stack, M. C. Grantham, Cryst. Growth Des. 2010, 10, 1409–1413.
- 10M. Wolthers, G. Nehrke, J. P. Gustafsson, P. Van Cappellen, Geochim. Cosmochim. Acta 2012, 77, 121–134.
- 11J. Schott, O. S. Pokrovsky, E. H. Oelkers, Rev. Mineral. Geochem. 2009, 70, 207–258.
- 12K. K. Sand, D. J. Tobler, S. Dobberschütz, E. Makovicky, K. Larsen, M. P. Andersson, S. L. S. Stipp, Cryst. Growth Des. 2016, 16, 3602–3612.
- 13L. G. Sillén, Acta Chem. Scand. 1961, 15, 1981.
- 14D. Gebauer, A. Voelkel, H. Coelfen, Science 2008, 322, 1819–1822.
- 15J. J. De Yoreo, L. A. Zepeda-Ruiz, R. W. Friddle, S. R. Qiu, L. E. Wasylenki, A. A. Chernov, G. H. Gilmer, P. M. Dove, Cryst. Growth Des. 2009, 9, 5135–5144.
- 16Details can be found in the Supporting Information.
- 17P. Raiteri, J. D. Gale, D. Quigley, P. M. Rodger, J. Phys. Chem. C 2010, 114, 5997–6010.
- 18L. N. Plummer, E. Busenberg, Geochim. Cosmochim. Acta 1982, 46, 1011–1040.
- 19G. H. Gilmer, R. Ghez, N. Cabrera, J. Cryst. Growth 1971, 8, 79–93.
- 20P. M. Dove, M. F. Hochella, Geochim. Cosmochim. Acta 1993, 57, 705–714.
- 21H. H. Teng, P. M. Dove, J. J. De Yoreo, Geochim. Cosmochim. Acta 2000, 64, 2255–2266.
- 22L. B. Gower, D. J. Odom, J. Cryst. Growth 2000, 210, 719–734.
- 23R. Demichelis, P. Raiteri, J. D. Gale, D. Quigley, D. Gebauer, Nat. Commun. 2011, 2, 590.
- 24W. J. E. M. Habraken, J. Tao, L. J. Brylka, H. Friedrich, L. Bertinetti, A. S. Schenk, A. Verch, V. Dmitrovic, P. H. H. Bomans, P. M. Frederik, J. Laven, P. van der Schoot, B. Aichmayer, G. de With, J. J. DeYoreo, N. A. J. M. Sommerdijk, Nat. Commun. 2013, 4, 1507.
- 25D. L. Parkhurst, C. A. J. Appelo, US Geol. Surv. Water Resour. Inv. Rep., Vol. 99–4259, 1999, p. 312.
- 26M. P. Andersson, S. L. S. Stipp, J. Phys. Chem. C 2012, 116, 18779–18787.
- 27Y. P. Lin, P. C. Singer, J. Cryst. Growth 2009, 312, 136–140.
- 28J. W. Gibbs, A. W. Smith, Trans. Conn. Acad. Arts Sci. 1874, 3, 108–248; J. W. Gibbs, A. W. Smith, Trans. Conn. Acad. Arts Sci. 1874, 3, 343–524.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.