Distribution Pattern of Length, Length Uniformity, and Density of TiO32− Quantum Wires in an ETS-10 Crystal Revealed by Laser-Scanning Confocal Polarized Micro-Raman Spectroscopy†
Dr. Nak Cheon Jeong
Korea Center for Artificial Photosynthesis and Department of Chemistry, Sogang University, Seoul 121-742 (Korea)
These authors contributed equally to this work.
Search for more papers by this authorDr. Hyunjin Lim
Department of Physics, Sogang University, Seoul 121-742 (Korea)
Current address: Agency for Defense Development, Daejeon 305-152 (Korea)
These authors contributed equally to this work.
Search for more papers by this authorProf. Dr. Hyeonsik Cheong
Department of Physics, Sogang University, Seoul 121-742 (Korea)
Search for more papers by this authorCorresponding Author
Prof. Dr. Kyung Byung Yoon
Korea Center for Artificial Photosynthesis and Department of Chemistry, Sogang University, Seoul 121-742 (Korea)
Korea Center for Artificial Photosynthesis and Department of Chemistry, Sogang University, Seoul 121-742 (Korea)Search for more papers by this authorDr. Nak Cheon Jeong
Korea Center for Artificial Photosynthesis and Department of Chemistry, Sogang University, Seoul 121-742 (Korea)
These authors contributed equally to this work.
Search for more papers by this authorDr. Hyunjin Lim
Department of Physics, Sogang University, Seoul 121-742 (Korea)
Current address: Agency for Defense Development, Daejeon 305-152 (Korea)
These authors contributed equally to this work.
Search for more papers by this authorProf. Dr. Hyeonsik Cheong
Department of Physics, Sogang University, Seoul 121-742 (Korea)
Search for more papers by this authorCorresponding Author
Prof. Dr. Kyung Byung Yoon
Korea Center for Artificial Photosynthesis and Department of Chemistry, Sogang University, Seoul 121-742 (Korea)
Korea Center for Artificial Photosynthesis and Department of Chemistry, Sogang University, Seoul 121-742 (Korea)Search for more papers by this authorWe thank the Korea Center for Artificial Photosynthesis located in Sogang University and funded by MEST through the National Research Foundation of Korea (NRF-2009-C1 AA A001-2009-0093879). We also thank Jiyoon Lee for providing us the graphics. H.C. further thanks the Future-Based Technology Development Program (Nano Fields) of the NRF funded by the MEST (2008-2004744).
Graphical Abstract
Innere Werte: Das Titanosilicat-Molekularsieb ETS-10 enthält TiO32−-Quantendrähte (QWs) unterschiedlicher Länge und lokaler Dichte entlang der [110]- und [10]-Richtung (siehe Bild). Eine Analyse eines Kristalls durch Laser-unterstütztes Raman-mikrospektroskopisches Abrastern zeigt, dass die QWs darin nicht gleichmäßig verteilt sind, sondern ein symmetrisches Muster bilden.
Supporting Information
Detailed facts of importance to specialist readers are published as ”Supporting Information”. Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors.
Filename | Description |
---|---|
ange_201102846_sm_miscellaneous_information.pdf267.5 KB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. M. Kuznicki, US Patent 4853202, 1989.
- 2M. W. Anderson, O. Terasaki, T. Ohsuna, A. Philippou, S. P. MacKay, A. Ferreira, J. Rocha, S. Lidin, Nature 1994, 367, 347–351.
- 3M. W. Anderson, O. Terasaki, T. Ohsuna, P. J. O. Malley, A. Philippou, S. P. MacKay, A. Ferreira, J. Rocha, S. Lidin, Philos. Mag. B 1995, 71, 813–841.
- 4L. Lv, G. Tsoi, X. S. Zhao, Ind. Eng. Chem. Res. 2004, 43, 7900–7906.
- 5X. S. Zhao, J. L. Lee, P. A. Chia, Langmuir 2003, 19, 1977–1979.
- 6L. Lv, K. Wang, X. S. Zhao, J. Colloid Interface Sci. 2007, 305, 218–225.
- 7J. H. Choi, S. D. Kim, S. H. Noh, S. J. Oh, W. J. Kim, Microporous Mesoporous Mater. 2006, 87, 163–169.
- 8J. H. Choi, S. D. Kim, Y. J. Kwon, W. J. Kim, Microporous Mesoporous Mater. 2006, 96, 157–167.
- 9C. B. Lopes, M. Otero, J. Coimbra, E. Pereira, J. Rocha, Z. Lin, A. Duarte, Microporous Mesoporous Mater. 2007, 103, 325–332.
- 10A. Philippou, M. Naderi, J. Rocha, M. W. Anderson, Catal. Lett. 1998, 53, 221–224.
- 11A. Philippou, M. W. Anderson, J. Catal. 2000, 189, 395–400.
- 12A. Valente, Z. Lin, P. Brandão, I. Portugal, M. W. Anderson, J. Rocha, J. Catal. 2001, 200, 99–105.
- 13E. J. Doskocil, J. Phys. Chem. B 2005, 109, 2315–2320.
- 14S. B. Waghmode, R. Vetrivel, C. S. Gohinath, S. Sivasanker, J. Phys. Chem. B 2004, 108, 11541–11548.
- 15V. Luca, M. Osborne, D. Sizgek, C. Griffith, P. Z. Araujo, Chem. Mater. 2006, 18, 6132–6138.
- 16P. Atienzar, S. Valencia, A. Corma, H. Garcia, ChemPhysChem 2007, 8, 1115–1119.
- 17N. C. Jeong, M. H. Lee, K. B. Yoon, Angew. Chem. 2007, 119, 5972–5976; Angew. Chem. Int. Ed. 2007, 46, 5868–5872.
- 18N. C. Jeong, Y. J. Lee, J.-H. Park, H. Lim, C.-H. Shin, H. Cheong, K. B. Yoon, J. Am. Chem. Soc. 2009, 131, 13080–13092.
- 19N. C. Jeong, Y. J. Lee, K. B. Yoon, Microporous Mesoporous Mater. 2008, 115, 308–313.
- 20F. X. Llabrés i Xamena, A. Damin, S. Bordiga, A. Zecchina, Chem. Commun. 2003, 1514–1515.
- 21A. Damin, F. X. Llabrés i Xamena, C. Lamberti, B. Civalleri, C. M. Zicovich-Wilson, A. Zecchina, J. Phys. Chem. B 2004, 108, 1328–1336.
- 22B. Yilmaz, J. Warzywoda, A. Sacco Jr., Nanotechnology 2006, 17, 4092–4099.
- 23E. Borello, C. Lamberti, S. Bordiga, A. Zecchina, C. O. Areán, Appl. Phys. Lett. 1997, 71, 2319–2321.
- 24S. Bordiga, G. T. Palomino, A. Zecchina, G. Ranghino, E. Giamello, C. Lamberti, J. Chem. Phys. 2000, 112, 3859–3867.
- 25A. M. Zimmerman, D. J. Doren, R. F. Lobo, J. Phys. Chem. B 2006, 110, 8959–8964.
- 26C. Lamberti, Microporous Mesoporous Mater. 1999, 30, 155–163.
- 27X. Wang, A. J. Jacobson, Chem. Commun. 1999, 973–974.
- 28D. V. Bavykin, J. M. Friedrich, F. C. Walsh, Adv. Mater. 2006, 18, 2807–2824.
- 29Y. K. Krisnandi, E. E. Lachowski, R. F. Howe, Chem. Mater. 2006, 18, 928–933.
- 30P. D. Southon, R. F. Howe, Chem. Mater. 2002, 14, 4209–4218.
- 31C. C. Pavel, B. Zibrowius, E. Löffler, W. Schmidt, Phys. Chem. Chem. Phys. 2007, 9, 3440–3446.
- 32B. Mihailova, V. Valtchev, S. Mintova, L. Konstantinov, Zeolites 1996, 16, 22–24.
- 33C. C. Pavel, S.-H. Park, A. Dreier, B. Tesche, W. Schmidt, Chem. Mater. 2006, 18, 3813–3820.
- 34L. Lv, J. K. Zhou, F. Su, X. S. Zhao, J. Phys. Chem. C 2007, 111, 773–778.
- 35Y. Su, M. L. Balmer, B. C. Bunker, J. Phys. Chem. B 2000, 104, 8160–8169.
- 36S. Ashtekar, A. M. Prakash, L. Kevan, L. F. Gladden, Chem. Commun. 1998, 91–92.
- 37S. Usseglio, P. Calza, A. Damin, C. Minero, S. Bordiga, C. Lamberti, E. Pelizzetti, A. Zecchina, Chem. Mater. 2006, 18, 3412–3424.
- 38L. Karwacki, E. Stavitski, M. H. F. Kox, J. Kornatowski, B. M. Weckhuysen, Angew. Chem. 2007, 119, 7366–7369;
10.1002/ange.200702012 Google ScholarAngew. Chem. Int. Ed. 2007, 46, 7228–7231.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.