Heralded and Complete Interconversion Between W State and Knill–Laflamme–Milburn State via State-Selective Reflection with Robust Fidelity
Xue-Mei Ren
State Key Laboratory of Dynamic Measurement Technology, North University of China, Tai Yuan, 030051 China
Search for more papers by this authorJing Guo
State Key Laboratory of Dynamic Measurement Technology, North University of China, Tai Yuan, 030051 China
Search for more papers by this authorCorresponding Author
Fang-Fang Du
State Key Laboratory of Dynamic Measurement Technology, North University of China, Tai Yuan, 030051 China
E-mail: [email protected]
Search for more papers by this authorXue-Mei Ren
State Key Laboratory of Dynamic Measurement Technology, North University of China, Tai Yuan, 030051 China
Search for more papers by this authorJing Guo
State Key Laboratory of Dynamic Measurement Technology, North University of China, Tai Yuan, 030051 China
Search for more papers by this authorCorresponding Author
Fang-Fang Du
State Key Laboratory of Dynamic Measurement Technology, North University of China, Tai Yuan, 030051 China
E-mail: [email protected]
Search for more papers by this authorAbstract
The interconversion of different types of entangled states not only can realize the information transmission but also play a significant role in quantum information technologies, including increasing scalability and computational power, and reducing error rates. Here, two protocols for achieving a complete interconversion between W state and Knill–Laflamme–Milburn state assisted by the quantum dot (QD)-cavity systems and common quantum control gates are proposed. In particular, the protocols employ a heralded approach strategically designed to predict potential failures and facilitate seamless interaction between the QD-cavity system and photons with the help of a single photon detectors, enhancing experimental accessibility. Through extensive analyzes and evaluations of two protocols, the proposed two protocols achieve remarkable utilization rates of photons (i.e., unit in principle) and achieve near-unit fidelities and high efficiencies in principle.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1M. A. Nielsen, I. Chuang, L. K. Grover, Am. J. Phys. 2002, 70, 558.
- 2T. Li, Z. K. Wang, K. Y. Xia, Opt. Express 2020, 28, 1316.
- 3F. F. Du, Y. T. Liu, Z. R. Shi, Y. X. Liang, J. Tang, J. Liu, Opt. Express 2019, 27, 27046.
- 4Z. X. Cui, W. Zhong, L. Zhou, Y. B. Sheng, Sci. China Phys. Mech. 2019, 62, 110311.
- 5G. L. Long, X. S. Liu, Phys. Rev. A 2002, 65, 032302.
- 6L. Zhou, B. W. Xu, W. Zhong, Y. B. Sheng, Phys. Rev. Appl. 2023, 19, 014036.
- 7T. Li, G. L. Long, New J. Phys. 2020, 22, 063017.
- 8W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, G. C. Guo, Phys. Rev. Lett. 2017, 118, 220501.
- 9G. L. Long, H. Zhang, Sci. Bull. 2021, 66, 1267.
- 10F. F. Du, X. M. Ren, Opt. Laser Technol. 2025, 180, 111440.
- 11J. W. Wu, G. L. Long, M. Hayashi, Phys. Rev. Appl. 2022, 17, 064011.
- 12Y. B. Sheng, L. Zhou, G. L. Long, Sci. Bull. 2022, 67, 367.
- 13W. Q. Liu, H. R. Wei, Adv. Quantum Technol. 2023, 6, 2300009.
- 14C. H. Bennett, S. J. Wiesner, Phys. Rev. Lett. 1992, 69, 2881.
- 15J. T. Barreiro, T. C. Wei, P. G. Kwiat, Nat. Phys. 2008, 4, 282.
- 16Y. B. Sheng, L. Zhou, Sci. China Phys. Mech. 2024, 67, 230331.
10.1007/s11433-023-2306-2 Google Scholar
- 17T. Li, A. Miranowicz, K. Y. Xia, F. Nori, Phys. Rev. A 2019, 100, 052302.
- 18Y. B. Sheng, F. G. Deng, G. L. Long, Phys. Rev. A 2010, 82, 032318.
- 19L. Zhou, Y. B. Sheng, Phys. Rev. A 2015, 92, 042314.
- 20T. Li, G. L. Long, New J. Phys. 2020, 22, 063017.
- 21Y. B. Sheng, L. Zhou, G. L. Long, Sci. Bull. 2022, 67, 367.
- 22G. L. Long, H. R. Zhang, Sci. Bull. 2021, 66, 1267.
- 23Z. T. Qi, Y. H. Li, Y. W. Huang, J. Feng, Y. L. Zheng, X. F. Chen, Light Sci. Appl. 2021, 10, 183.
- 24Y. B. Sheng, L. Zhou, Sci. China Phys. Mech. 2023, 66, 260331.
10.1007/s11433-023-2110-x Google Scholar
- 25D. X. Li, X. Q. Shao, J. H. Wu, X. X. Yi, T. Y. Zheng, Opt. Express 2018, 26, 2292.
- 26Z. H. Xie, Y. J. Liu, X. Mo, T. Li, Z. H. Li, Phys. Rev. A 2021, 104, 062409.
- 27D. X. Li, X. Q. Shao, J. H. Wu, X. X. Yi, Opt. Lett. 2018, 43, 1639.
- 28C. P. Shen, X. F. Gu, Q. Guo, X. Y. Zhu, S. L. Su, E. J. Liang, J. Opt. Soc. A. B 2018, 35, 694.
- 29Y. Liu, Z. C. Shi, J. Song, Y. H. Chen, Y. Xia, Adv. Quantum Technol. 2024, 7, 202400009.
- 30L. Jiang, Z. H. Li, T. Li, Opt. Express 2023, 31, 12508.
- 31H. Zhou, T. Li, K. Y. Xia, Phys. Rev. A 2023, 107, 022428.
- 32G. Z. Song, M. J. Tao, J. Qiu, H. R. Wei, Phys. Rev. A 2022, 106, 032416.
- 33L. Dong, L. Lv, Z. L. Yang, S. T. Liu, X. Y. Wang, X. Geng, Y. P. Ren, Y. Q. Ji, X. M. Xiu, Adv. Quantum Technol. 2022, 5, 2200092.
- 34F. F. Du, X. M. Ren, Z. G. Fan, L. H. Li, X. S. Du, M. Ma, G. Fan, J. Guo, Opt. Express 2024, 32, 1686.
- 35G. Z. Song, M. J. Tao, J. Qiu, H. R. Wei, Phys. Rev. A 2022, 106, 032416.
- 36N. K. Yu, C. Guo, R. Y. Duan, Phys. Rev. Lett. 2014, 112, 160401.
- 37P. Vrana, M. Christandl, J. Math. Phys. 2015, 56, 022204.
- 38W. X. Cui, S. Hu, H. F. Wang, A. D. Zhu, S. Zhang, Opt. Express 2016, 24, 15319.
- 39J. K. Nauth, V. M. Stojanović, Phys. Rev. A 2022, 106, 032605.
- 40L. Chen, X. M. Xiu, L. Dong, N. N. Liu, C. P. Shen, S. Zhang, S. Chen, S. L. Su, Opt. Lett. 2022, 47, 2262.
- 41C. P. Shen, X. M. Xiu, L. Dong, X. Y. Zhu, L. Chen, E. J. Liang, L. L. Yan, S. L. Su, Ann. Phys. 2019, 531, 1900160.
- 42R. H. Zheng, Y. H. Kang, D. Ran, Z. C. Shi, Y. Xia, Phys. Rev. A 2020, 101, 012345.
- 43F. F. Du, G. Fan, X. M. Ren, Quantum 2024, 8, 1342.
- 44Z. R. Shi, Z. H. Li, H. F. Wen, H. Guo, Z. M. Ma, J. Tang, J. Liu, Chin. Opt. Lett. 2024, 22, 101202.
10.3788/COL202422.101202 Google Scholar
- 45M. Veldhorst, J. C. C. Hwang, C. H. Yang, A. W. Leenstra, B. de Ronde, J. P. Dehollain, J. T. Muhonen, F. E. Hudson, K. M. Itoh, A. Morello, A. S. Dzurak, Nat. Nanotechnol. 2014, 9, 981.
- 46C. Cao, L. Zhang, Y. H. Han, P. P. Yin, L. Fan, Y. w. Duan, R. Zhang, Opt. Express 2020, 28, 2857.
- 47Z. R. Shi, Z. h. Li, Y. l. Liang, H. Zhang, H. f. Wen, H. Guo, Z. m. Ma, J. Tang, J. Liu, IEEE Sens. J. 2023, 23, 24366.
- 48E. Abe, H. Wu, A. Ardavan, J. J. L. Morton, Appl. Phys. Lett. 2011, 98, 251108.
- 49K. G. Lagoudakis, K. Fischer, T. Sarmiento, A. Majumdar, A. Rundquist, J. Lu, M. Bajcsy, J. Vučkovií, New J. Phys. 2013, 15, 113056.
10.1088/1367-2630/15/11/113056 Google Scholar
- 50C. Y. Hu, A. Young, J. L. O'Brien, W. J. Munro, J. G. Rarity, Phys. Rev. B 2008, 78, 085307.
- 51F. F. Du, Y. M. Wu, G. Fan, Adv. Quantum Technol. 2023, 6, 2300090.
- 52T. Li, F. G. Deng, Phys. Rev. A 2016, 94, 062310.
- 53B. C. Pursley, S. G. Carter, M. K. Yakes, A. S. Bracker, D. Gammon, Nat. Commun. 2018, 9, 115.
- 54J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, D. D. Awschalom, Science 2008, 320, 349.
- 55C. W. Gardiner, M. J. Collett, Phys. Rev. A 1985, 31, 3761.
- 56J. H. An, M. Feng, C. H. Oh, Phys. Rev. A 2009, 79, 032303.
- 57G. Z. Song, J. L. Guo, Q. Liu, H. R. Wei, G. L. Long, Phys. Rev. A 2021, 104, 012608.
- 58F. F. Du, G. Fan, X. M. Ren, M. Ma, Adv. Quantum Technol. 2023, 6, 2300201.
- 59G. Z. Song, Q. Liu, J. Qiu, G. J. Yang, F. Alzahrani, A. Hobiny, F. G. Deng, M. Zhang, Ann. Phys. 2017, 387, 152.
- 60E. Knill, R. Laflamme, G. J. Milburn, Nature 2001, 409, 46.
- 61P. Agrawal, A. Pati, Phys. Rev. A 2006, 74, 062320.
- 62F. F. Du, X. M. Ren, M. Ma, G. Fan, Opt. Lett. 2024, 49, 1229.
- 63G. L. Jiang, J. B. Yuan, W. Q. Liu, H. R. Wei, Phys. Rev. Appl. 2024, 21, 014001.
- 64F. F. Du, Z. R. Shi, Opt. Express 2019, 27, 17493.
- 65G. Z. Song, J. L. Guo, Q. Liu, H. R. Wei, G. L. Long, Phys. Rev. A 2021, 104, 012608.
- 66Y. H. Han, C. Cao, L. Fan, R. Zhang, Opt. Express 2021, 29, 20045.
- 67Y. M. Wu, G. Fan, F. F. Du, Front. Phys. 2022, 17, 51502.
- 68S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Gorbunov, M. Strauss, S. H. Kwon, C. Schneider, A. Loeffler, S. Hoefling, M. Kamp, A. Forchel, Appl. Phys. Lett. 2007, 90, 251109.
- 69C. Arnold, V. Loo, A. Lemaitre, I. Sagnes, O. Krebs, P. Voisin, P. Senellart, L. Lanco, Appl. Phys. Lett. 2012, 100, 111111.