Purification for Hybrid Entanglement between Discrete- and Continuous-Variable States
Cheng-Chen Luo
College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023 China
Institute of Quantum Information and Technology, Nanjing University of Posts and Telecommunications, Nanjing, 210003 China
Search for more papers by this authorLan Zhou
College of Science, Nanjing University of Posts and Telecommunications, Nanjing, 210023 China
Search for more papers by this authorWei Zhong
Institute of Quantum Information and Technology, Nanjing University of Posts and Telecommunications, Nanjing, 210003 China
Search for more papers by this authorMing-Ming Du
College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023 China
Search for more papers by this authorXi-Yun Li
College of Science, Nanjing University of Posts and Telecommunications, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Yu-Bo Sheng
College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023 China
Institute of Quantum Information and Technology, Nanjing University of Posts and Telecommunications, Nanjing, 210003 China
E-mail: [email protected]
Search for more papers by this authorCheng-Chen Luo
College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023 China
Institute of Quantum Information and Technology, Nanjing University of Posts and Telecommunications, Nanjing, 210003 China
Search for more papers by this authorLan Zhou
College of Science, Nanjing University of Posts and Telecommunications, Nanjing, 210023 China
Search for more papers by this authorWei Zhong
Institute of Quantum Information and Technology, Nanjing University of Posts and Telecommunications, Nanjing, 210003 China
Search for more papers by this authorMing-Ming Du
College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023 China
Search for more papers by this authorXi-Yun Li
College of Science, Nanjing University of Posts and Telecommunications, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Yu-Bo Sheng
College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023 China
Institute of Quantum Information and Technology, Nanjing University of Posts and Telecommunications, Nanjing, 210003 China
E-mail: [email protected]
Search for more papers by this authorAbstract
Hybrid entangled states (HES) have attracted significant attention and been utilized in various quantum information processing applications. However, like many other entangled states, maximally entangled HES may degrade to mixed states due to environmental noise and operational imperfections. In this paper, a hybrid entanglement purification protocol (HEPP) for the HES, which consists of photon-number state and coherent state is proposed. This HEPP is designed to effectively purify a bit-flip error occurring in any qubit of the HES. Furthermore, HEPP is extended to a general condition, say, the multi-party scenario, and integrates the generation of HES into the HEPP. Moreover, if different initial mixed states are chosen, then the residual entanglement can be utilized to distill high-quality entanglement. The HEPP has important applications in the future quantum information processing field.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters, Phys. Rev. Lett. 1993, 70, 1895.
- 2D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger, Nature 1997, 390, 575.
- 3X. M. Hu, Y. Guo, B. H. Liu, C. F. Li, G. C. Guo, Nat. Rev. Phys. 2023, 5, 339.
- 4A. K. Ekert, Phys. Rev. Lett. 1991, 67, 661.
- 5F. H. Xu, X. F. Ma, Q. Zhang, H. K. Lo, J. W. Pan, Rev. Mod. Phys. 2020, 92, 025002.
- 6F. Basso Basset, M. Valeri, E. Roccia, V. Muredda, D. Poderini, J. Neuwirth, N. Spagnolo, M. B. Rota, G. Carvacho, F. Sciarrino, R. Trotta, Sci. Adv. 2021, 7, eabe6379.
- 7X. Liu, J. Y. Liu, R. Xue, , H. Wang, H. Li, X. Feng, F. Liu, K. Cui, Z. Wang, L. You, Y. Huang, W. Zhang, PhotoniX 2022, 3, 2.
10.1186/s43074-022-00048-2 Google Scholar
- 8S. Du, P. Wang, J. Liu, Y. Tian, Y. Li, Photonics Res. 2023, 11, 463.
- 9J. Y. Liu, Z. H. Lin, D. N. Liu, X. Feng, F. Liu, K. Y. Cui, Y. D. Huang, W. Zhang, Quantum Sci. Technol. 2024, 9, 015003.
- 10M. Hillery, V. Bužek, A. Berthiaume, Phys. Rev. A 1999, 59, 1829.
- 11H. Lai, J. Pieprzyk, L. Pan, Phys. Rev. A 2022, 106, 052403.
- 12T. Zhang, L. Zhou, W. Zhong, Y. B. Sheng, Laser Phys. Lett. 2023, 20, 025203.
10.1088/1612-202X/acb04f Google Scholar
- 13C. W. Tsai, C. H. Wang, Ann. Phys. 2023, 535, 2300116.
10.1002/andp.202300116 Google Scholar
- 14G. L. Long, X. S. Liu, Phys. Rev. A 2002, 65, 032302.
- 15F. G. Deng, G. L. Long, X. S. Liu, Phys. Rev. A 2003, 68, 042317.
- 16S. S. Chen, L. Zhou, W. Zhong, Y. B. Sheng, Sci. China: Phys., Mech. Astron. 2018, 61, 230361.
- 17L. Zhou, Y. B. Sheng, G. L. Long, Sci. Bull. 2020, 65, 12.
- 18Z. R. Zhou, Y. B. Sheng, P. H. Niu, L. G. Yin, G. L. Long, L. Hanzo, Sci. China: Phys., Mech. Astron. 2020, 63, 230362.
- 19Y. B. Sheng, L. Zhou, G. L. Long, Sci. Bull. 2022, 67, 367.
- 20L. Zhou, Y. B. Sheng, Sci. China: Phys., Mech. Astron. 2022, 65, 250311.
- 21J. W. Ying, L. Zhou, W. Zhong, Y. B. Sheng, Chin. Phys. B 2022, 31, 120303.
10.1088/1674-1056/ac8f37 Google Scholar
- 22H. Zeng, M. M. Du, W. Zhong, L. Zhou, Y. B. Sheng, Fundam. Res. 2023, https://doi.org/10.1016/j.fmre.2023.11.006
10.1016/j.fmre.2023.11.006 Google Scholar
- 23H. J. Briegel, W. Dür, J. I. Cirac, P. Zoller, Phys. Rev. Lett. 1998, 81, 5932.
- 24N. K. Bernardes, L. Praxmeyer, P. van Loock, Phys. Rev. A 2011, 83, 012323.
10.1103/PhysRevA.83.012323 Google Scholar
- 25R. Beals, S. Brierley, O. Gray, A. W. Harrow, S. Kutin, N. Linden, D. Shepherd, M. Stather, Proc. Math. Phys. Eng. Sci. 2013, 469, 20120686.
- 26Y. Zhang, Q. Ni, Quantum Eng. 2020, 2, e34.
10.1002/que2.34 Google Scholar
- 27D. Chruściński, G. Sarbicki, J. Phys. A: Math. Theor. 2014, 47, 483001.
- 28J. L. O'brien, Science 2007, 318, 1567.
- 29L. Ge, J. Xin, L. Zhang, Ann. Phys. 2023, 535, 2200453.
- 30Y. L. Li, Y. B. Zeng, L. Yao, X. Xiao, Ann. Phys. 2023, 535, 2200535.
- 31P. Wang, Z. Zhang, C. Q. Yu, R. Y. Yuan, F. F. Du, B. C. Ren, Ann. Phys. 2023, 535, 2200505.
- 32J. W. Ying, J. C. Shen, L. Zhou, W. Zhong, M. M. Du, Y. B. Sheng, Ann. Phys. 2023, 535, 2300212.
10.1002/andp.202300212 Google Scholar
- 33B. Lu, L. Liu, J. Y. Song, K. Wen, C. Wang, AAPPS Bull. 2023, 33, 7.
10.1007/s43673-023-00077-4 Google Scholar
- 34J. S. Huang, X. J. Chen, X. D. Li, J. W. Wang, AAPPS Bull. 2023, 33, 14.
10.1007/s43673-023-00082-7 Google Scholar
- 35Z. B. Chen, Fundam. Res. 2023, https://doi.org/10.1016/j.fmre.2023.10.004
10.1016/j.fmre.2023.10.004 Google Scholar
- 36Z. R. Zhou, H. Li, G. L. Long, Fundam. Res. 2023, https://doi.org/10.1016/j.fmre.2023.10.001
10.1016/j.fmre.2023.10.001 Google Scholar
- 37A. I. Lvovsky, M. G. Raymer, Rev. Mod. Phys. 2009, 81, 299.
- 38S. L. Braunstein, H. J. Kimble, Phys. Rev. Lett. 1998, 80, 869.
- 39S. W. Lee, H. Jeong, Phys. Rev. A 2013, 87, 022326.
10.1103/PhysRevA.87.022326 Google Scholar
- 40J. C. Light, I. P. Hamilton, J. V. Lill, J. Chem. Phys. 1985, 82, 1400.
- 41Y. H. Kim, S. P. Kulik, Y. Shih, Phys. Rev. Lett. 2001, 86, 1370.
- 42U. L. Andersen, J. S. Neergaard-Nielsen, P. van Loock, A. Furusawa, Nat. Phys. 2015, 11, 713.
- 43H. Jeong, A. Zavatta, M. Kang, S. W. Lee, L. S. Costanzo, S. Grandi, T. C. Ralph, M. Bellini, Nat. Photonics 2014, 8, 564.
- 44P. van Loock, Laser Photonics Rev. 2011, 5, 167.
- 45P. van Loock, W. J. Munro, K. Nemoto, T. P. Spiller, T. D. Ladd, S. L. Braunstein, G. J. Milburn, Phys. Rev. A 2008, 78, 022303.
10.1103/PhysRevA.78.022303 Google Scholar
- 46S. Omkar, Y. S. Teo, H. Jeong, Phys. Rev. Lett. 2020, 125, 060501.
- 47B. Jing, X. J. Wang, Y. Yu, P. F. Sun, Y. Jiang, S. J. Yang, W. H. Jiang, X. Y. Luo, J. Zhang, X. Jiang, X. H. Bao, J. W. Pan, Nat. Photonics 2019, 13, 210.
- 48A. Reiserer, G. Rempe, Rev. Mod. Phys. 2015, 87, 1379.
- 49M. Cattaneo, M. G. Paris, S. Olivares, Phys. Rev. A 2018, 98, 012333.
- 50P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, Y. Yamamoto, Phys. Rev. Lett. 2006, 96, 240501.
- 51M. Bergmann, P. van Loock, Phys. Rev. A 2019, 99, 032349.
- 52A. E. Ulanov, D. Sychev, A. A. Pushkina, I. A. Fedorov, A. I. Lvovsky, Phys. Rev. Lett. 2017, 118, 160501.
- 53G. Guccione, T. Darras, H. Le Jeannic, V. B. Verma, S. W. Nam, A. Cavaillès, J. Laurat, Sci. Adv. 2020, 6, eaba4508.
- 54C. C. Gerry, Phys. Rev. A 1999, 59, 4095.
- 55H. Jeong, S. Bae, S. Choi, Quantum Inf. Process. 2016, 15, 913.
- 56C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, W. K. Wootters, Phys. Rev. Lett. 1996, 76, 722.
- 57D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, A. Sanpera, Phys. Rev. Lett. 1996, 77, 2818.
- 58J. W. Pan, C. Simon, Č. Brukner, A. Zeilinger, Nature 2001, 410, 1067.
- 59J. W. Pan, S. Gasparoni, R. Ursin, G. Weihs, A. Zeilinger, Nature 2003, 423, 417.
- 60Y. B. Sheng, F. G. Deng, H. Y. Zhou, Phys. Rev. A 2008, 77, 042308.
- 61B. C. Ren, F. F. Du, F. G. Deng, Phys. Rev. A 2014, 90, 052309.
- 62J. Miguel Ramiro, W. Dür, Phys. Rev. A 2018, 98, 042309.
- 63L. Zhou, W. Zhong, Y. B. Sheng, Opt. Express 2020, 28, 2291.
- 64X.-M. Hu, C.-X. Huang, Y.-B. Sheng, L. Zhou, B.-H. Liu, Y. Guo, C. Zhang, W.-B. Xing, Y.-F. Huang, C.-F. Li, G.-C. Guo, Phys. Rev. Lett. 2021, 126, 010503.
- 65C. X. Huang, X. M. Hu, B. H. Liu, L. Zhou, Y. B. Sheng, C. F. Li, G. C. Guo, Sci. Bull. 2022, 67, 593.
- 66P. S. Yan, L. Zhou, W. Zhong, Y. B. Sheng, Phys. Rev. A 2022, 105, 062418.
- 67F. Preti, T. Calarco, J. M. Torres, J. Z. Bernád, Phys. Rev. A 2022, 106, 022422.
- 68H. Yan, Y. Zhong, H. S. Chang, A. Bienfait, M. H. Chou, C. R. Conner, É. Dumur, J. Grebel, R. G. Povey, A. N. Cleland, Phys. Rev. Lett. 2022, 128, 080504.
- 69F. Riera-Sàbat, P. Sekatski, A. Pirker, W. Dür, Phys. Rev. Lett. 2021, 127, 040502.
- 70S. Parker, S. Bose, M. B. Plenio, Phys. Rev. A 2000, 61, 032305.
- 71J. Fiurášek, P. Marek, R. Filip, R. Schnabel, Phys. Rev. A 2007, 75, 050302.
10.1103/PhysRevA.75.050302 Google Scholar
- 72K. Jeong, Y. Lim, Phys. Lett. A 2016, 380, 3607.
- 73Y. B. Sheng, L. Zhou, G. L. Long, Phys. Rev. A 2013, 88, 022302.
- 74C. C. Luo, L. Zhou, W. Zhong, Y. B. Sheng, Quantum Inf. Process. 2022, 21, 300.
10.1007/s11128-022-03646-y Google Scholar
- 75V. B. Braginsky, Y. I. Vorontsov, K. S. Thorne, Science 1980, 209, 547.
- 76V. Sasikala, K. Chitra, J. Opt. 2018, 47, 307.
- 77K. Nemoto, W. J. Munro, Phys. Rev. Lett. 2004, 93, 250502.
- 78J. L. O'Brien, G. J. Pryde, A. G. White, T. C. Ralph, D. Branning, Nature 2003, 426, 264.
- 79Y. B. Sheng, L. Zhou, Entropy 2013, 15, 1776.
- 80Y. B. Sheng, F. G. Deng, Phys. Rev. A 2010, 81, 032307.
- 81X. Y. Luo, Y. Q. Zou, L. N. Wu, Q. Liu, M. F. Han, M. K. Tey, L. You, Science 2017, 355, 620.
- 82T. Ralph, S. Bartlett, J. O'Brien, G. Pryde, H. Wiseman, Phys. Rev. A 2006, 73, 012113.
10.1103/PhysRevA.73.012113 Google Scholar
- 83J. Volz, M. Scheucher, C. Junge, A. Rauschenbeutel, Nat. Photonics 2014, 8, 965.
- 84Y. B. Qian, D. G. Lai, M. R. Chen, B. P. Hou, Phys. Rev. A 2021, 104, 033705.