A Modified Quasi-Classical Analysis to Capture the Effects of Strong Interaction in Open QED Lattices
Corresponding Author
Tarush Tiwari
School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005 India
Department of Physics and Applied Physics, University of Massachusetts, Lowell, MA, 01854 USA
E-mail: [email protected]; [email protected]
Search for more papers by this authorKuldeep K Shrivastava
Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005 India
Search for more papers by this authorCorresponding Author
Rajeev Singh
Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005 India
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Tarush Tiwari
School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005 India
Department of Physics and Applied Physics, University of Massachusetts, Lowell, MA, 01854 USA
E-mail: [email protected]; [email protected]
Search for more papers by this authorKuldeep K Shrivastava
Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005 India
Search for more papers by this authorCorresponding Author
Rajeev Singh
Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005 India
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
The role of optical nonlinearity in light propagation through two different 1D open QED lattices is investigated, namely a chain of qubits with direct coupling between the nearest neighbors and a chain of connected resonators to each of which a qubit is side-coupled. Using the more accurate truncated Heisenberg-Langevin equations method, a reduction of light transmission with increasing intensity in these lattices is shown due to effective photon–photon interactions and related photon blockade mediated by nonlinearity in qubits. In contrast to the direct-coupled qubits, a revival in the light transmission is found in the side-coupled qubits at relatively higher intensities due to saturation of qubits by photons. In absence of bulk dissipation, it is found that the standard quasi-classical analysis fails to capture the reduction in light transmission due to effective photon–photon interaction. A systemic method is devised to modify the quasi-classical analysis to give much better results.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
References
- 1E. Akkermans, G. Montambaux, Mesoscopic Physics of Electrons and Photons, Cambridge University Press, Cambridge, UK 2007.
- 2H. Walther, B. T. H. Varcoe, B.-G. Englert, T. Becker, Rep. Prog. Phys. 2006, 69, 1325.
- 3S. M. Girvin, M. H. Devoret, R. J. Schoelkopf, Phys. Scr. 2009, T137, 014012.
- 4D. Roy, C. M. Wilson, O. Firstenberg, Rev. Mod. Phys. 2017, 89, 021001.
- 5X. Gu, A. F. Kockum, A. Miranowicz, Y. xi Liu, F. Nori, Phys. Rep. 2017, 718-719, 1.
- 6T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, V. Vuletić, Nature 2012, 488, 57.
- 7O. Firstenberg, T. Peyronel, Q.-Y. Liang, A. V. Gorshkov, M. D. Lukin, V. Vuletić, Nature 2013, 502, 71.
- 8M. Fitzpatrick, N. M. Sundaresan, A. C. Y. Li, J. Koch, A. A. Houck, Phys. Rev. X 2017, 7, 011016.
- 9Z. Meir, O. Schwartz, E. Shahmoon, D. Oron, R. Ozeri, Phys. Rev. Lett. 2014, 113, 193002.
- 10T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, H. J. Kimble, Phys. Rev. Lett. 2009, 102, 083601.
- 11D. L. Underwood, W. E. Shanks, J. Koch, A. A. Houck, Phys. Rev. A 2012, 86, 023837.
- 12S. Schmidt, J. Koch, Ann. der Phys. 2013, 525, 395.
- 13J. Raftery, D. Sadri, S. Schmidt, H. E. Türeci, A. A. Houck, Phys. Rev. X 2014, 4, 031043.
- 14U. Naether, F. Quijandría, J. J. García-Ripoll, D. Zueco, Phys. Rev. A 2015, 91, 033823.
10.1103/PhysRevA.91.033823 Google Scholar
- 15K. Le Hur, L. Henriet, A. Petrescu, K. Plekhanov, G. Roux, M. Schiró, Comp. Ren. Phys. 2016, 17, 808.
- 16C. Noh, D. G. Angelakis, Rep. Prog. Phys. 2016, 80, 016401.
- 17A. J. Kollár, M. Fitzpatrick, A. A. Houck, Nature 2019, 571, 45.
- 18T. Orell, A. A. Michailidis, M. Serbyn, M. Silveri, Phys. Rev. B 2019, 100, 134504.
- 19R. Ma, B. Saxberg, C. Owens, N. Leung, Y. Lu, J. Simon, D. I. Schuster, Nature 2019, 566, 51.
- 20J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, O. Benson, App. Phys. Lett. 2010, 97, 14.
10.1063/1.3499300 Google Scholar
- 21A. F. van Loo, A. Fedorov, K. Lalumière, B. C. Sanders, A. Blais, A. Wallraff, Science 2013, 342, 1494.
- 22J.-T. Shen, S. Fan, Phys. Rev. A 2007, 76, 062709.
- 23V. I. Yudson, P. Reineker, Phys. Rev. A 2008, 78, 052713.
- 24V. I. Yudson, P. Reineker, Opt. Spec. 2010, 108, 362.
- 25D. Roy, Phys. Rev. B 2010, 81, 155117.
- 26H. Zheng, D. J. Gauthier, H. U. Baranger, Phys. Rev. A 2010, 82, 063816.
- 27J.-Q. Liao, C. K. Law, Phys. Rev. A 2010, 82, 053836.
- 28S. Fan, S. E. Kocabas, J.-T. Shen, Phys. Rev. A 2010, 82, 063821.
- 29K. Koshino, Y. Nakamura, New J. Phys. 2012, 14, 043005.
10.1088/1367-2630/14/4/043005 Google Scholar
- 30D. Roy, Sci. Rep. 2013, 3, 2337.
- 31S. Xu, E. Rephaeli, S. Fan, Phys. Rev. Lett. 2013, 111, 223602.
- 32K. Lalumière, B. C. Sanders, A. F. van Loo, A. Fedorov, A. Wallraff, A. Blais, Phys. Rev. A 2013, 88, 043806.
- 33A. C. Y. Li, F. Petruccione, J. Koch, Sci. Rep. 2014, 4, 4887.
- 34Y.-L. L. Fang, H. U. Baranger, Phys. Rev. A 2015, 91, 053845.
- 35M. J. Hartmann, J. Opt. 2016, 18, 104005.
- 36A. C. Y. Li, F. Petruccione, J. Koch, Phys. Rev. X 2016, 6, 021037.
- 37D. Roy, Phys. Rev. A 2017, 96, 033838.
- 38P. Longo, P. Schmitteckert, K. Busch, Phys. Rev. Lett. 2010, 104, 023602.
- 39D. Roy, Phys. Rev. A 2011, 83, 043823.
10.1103/PhysRevA.83.043823 Google Scholar
- 40E. Sanchez-Burillo, D. Zueco, J. J. Garcia-Ripoll, L. Martin-Moreno, Phys. Rev. Lett. 2014, 113, 263604.
- 41T. Caneva, M. T. Manzoni, T. Shi, J. S. Douglas, J. I. Cirac, D. E. Chang, New J. Phys. 2015, 17, 113001.
10.1088/1367-2630/17/11/113001 Google Scholar
- 42P. Manasi, D. Roy, Phys. Rev. A 2018, 98, 023802.
- 43U. Naether, F. Quijandría, J. J. García-Ripoll, D. Zueco, Phys. Rev. A 2015, 91, 033823.
10.1103/PhysRevA.91.033823 Google Scholar
- 44M. O. Scully, M. S. Zubairy, Quantum Optics, Cambridge University Press, Cambridge, UK 1997.
10.1017/CBO9780511813993 Google Scholar
- 45T. F. See, V. M. Bastidas, J. Tangpanitanon, D. G. Angelakis, Phys. Rev. A 2019, 99, 033835.
- 46A. Pal, D. A. Huse, Phys. Rev. B 2010, 82, 174411.
- 47D. Roy, R. Singh, R. Moessner, Phys. Rev. B 2015, 92, 180205.
10.1103/PhysRevB.92.180205 Google Scholar
- 48R. Singh, E. Shimshoni, Ann. der Phys. 2017, 529, 1600309.
- 49D. Kilda, J. Keeling, Phys. Rev. Lett. 2019, 122, 043602.
- 50I.-C. Hoi, C. M. Wilson, G. Johansson, T. Palomaki, B. Peropadre, P. Delsing, Phys. Rev. Lett. 2011, 107, 073601.
- 51O. Astafiev, A. M. Zagoskin, A. A. Abdumalikov, Y. A. Pashkin, T. Yamamoto, K. Inomata, Y. Nakamura, J. S. Tsai, Science 2010, 327, 840.