Constraints via the Event Horizon Telescope for Black Hole Solutions with Dark Matter under the Generalized Uncertainty Principle Minimal Length Scale Effect
Corresponding Author
Ali Övgün
Physics Department, Eastern Mediterranean University, North Cyprus via Mersin 10, 99628 Famagusta, Turkey
E-mail: [email protected]
Search for more papers by this authorLemuel John F. Sese
Physics Department, Mapúa University, 658 Muralla St., Intramuros, Manila, 1002 Philippines
Search for more papers by this authorReggie C. Pantig
Physics Department, Mapúa University, 658 Muralla St., Intramuros, Manila, 1002 Philippines
Search for more papers by this authorCorresponding Author
Ali Övgün
Physics Department, Eastern Mediterranean University, North Cyprus via Mersin 10, 99628 Famagusta, Turkey
E-mail: [email protected]
Search for more papers by this authorLemuel John F. Sese
Physics Department, Mapúa University, 658 Muralla St., Intramuros, Manila, 1002 Philippines
Search for more papers by this authorReggie C. Pantig
Physics Department, Mapúa University, 658 Muralla St., Intramuros, Manila, 1002 Philippines
Search for more papers by this authorAbstract
Four spherically symmetric but non-asymptotically flat black hole solutions surrounded with spherical dark matter distribution perceived under the minimal length scale effect is derived via the generalized uncertainty principle. Here, the effect of this quantum correction, described by the parameter , is considered on a toy model galaxy with dark matter and the three well-known dark matter distributions: the cold dark matter, scalar field dark matter, and the universal rotation curve. The aim is to find constraints to by applying these solutions to the known supermassive black holes: Sagittarius A (Sgr. A*) and Messier 87* (M87*), in conjunction with the available Event Horizon telescope. The effect of is then examined on the event horizon, photonsphere, and shadow radii, where unique deviations from the Schwarzschild case are observed. As for the shadow radii, bounds are obtained for the values of on each black hole solution at confidence level. The results revealed that under minimal length scale effect, black holes can give positive (larger shadow) and negative values (smaller shadow) of , which are supported indirectly by laboratory experiments and astrophysical or cosmological observations, respectively.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
References
- 1J. M. Bardeen, in Proc. Ecole d'Eté de Physique Théorique: Les Astres Occlus: Les Houches, NASA, Washington, D.C. 1973, pp. 215–240.
- 2K. Akiyama, A. Alberdi, W. Alef, K. Asada, R. Azulay, A.-K. Baczko, D. Ball, M. Balokovic, J. Barrett, D. Bintley, L. Blackburn, W. Boland, K. L. Bouman, G. C. Bower, M. Bremer, C. D. Brinkerink, R. Brissenden, S. Britzen, A. E. Broderick, D. Broguiere, T. Bronzwaer, D.-Y. Byun, J. E. Carlstrom, A. Chae, C.-k. Chan, S. Chatterjee, K. Chatterjee, M.-T. Chen, Y. Chen, I. Cho, et al., Astrophys. J. Lett. 2019, 875, L1.
- 3K. Akiyama, A. Alberdi, W. Alef, J. C. Algaba, R. Anantua, K. Asada, R. Azulay, U. Bach, A.-K. Baczko, D. Ball, M. Balokovic, J. Barrett, M. Bauböck, B. A. Benson, D. Bintley, L. Blackburn, R. Blundell, K. L. Bouman, G. C. Bower, H. Boyce, M. Bremer, C. D. Brinkerink, R. Brissenden, S. Britzen, A. E. Broderick, D. Broguiere, T. Bronzwaer, S. Bustamante, D.-Y. Byun, J. E. Carlstrom, et al., Astrophys. J. Lett. 2022, 930, L12.
- 4C. T. Cunningham, J. M. Bardeen, Astrophys. J. 1973, 183, 237.
- 5J. M. Bardeen, in Gravitational Radiation and Gravitational Collapse (Eds: C. Dewitt-Morette), Vol. 64, Springer, Berlin, Heidelberg 1974, p. 132.
- 6J. P. Luminet, Astron. Astrophys. 1979, 75, 228.
- 7H. Falcke, F. Melia, E. Agol, Astrophys. J. Lett. 2000, 528, L13.
- 8A. de Vries, Class. Quantum Grav. 1999, 17, 123.
- 9N. Jarosik, C. L. Bennett, J. Dunkley, B. Gold, M. R. Greason, M. Halpern, R. S. Hill, G. Hinshaw, A. Kogut, E. Komatsu, D. Larson, M. Limon, S. S. Meyer, M. R. Nolta, N. Odegard, L. Page, K. M. Smith, D. N. Spergel, G. S. Tucker, J. L. Weiland, E. Wollack, E. L. Wright, Astrophys. J. Suppl. 2011, 192, 14.
- 10B. Moore, Nature 1994, 370, 629.
- 11A. A. Klypin, A. V. Kravtsov, O. Valenzuela, F. Prada, Astrophys. J. 1999, 522, 82.
- 12M. Boylan-Kolchin, J. S. Bullock, M. Kaplinghat, Mon. Not. Roy. Astron. Soc. 2011, 415, L40.
- 13R. Bernabei, P. Belli1, A. Bussolotti, F. Cappella, V. Caracciolo, R. Cerulli, C. J. Dai, A. dÁngelo, A. Di Marco, H. L. He, A. Incicchitti, X. H. Ma, A. Mattei, V. Merlo, F. Montecchia, X. D. Sheng, Z. P. Ye, Nucl. Phys. Atom. Energy 2018, 19, 307.
- 14G. Angloher, A. Bento, C. Bucci, L. Canonica, X. Defay, A. Erb, F. von Feilitzsch, N. Ferreiro Iachellini, P. Gorla, A. Gütlein, D. Hauff, J. Jochum, M. Kiefer, H. Kluck, H. Kraus, J. C. Lanfranchi, J. Loebell, A. Múnster, C. Pagliarone, F. Petricca, W. Potzel, F. Pröbst, F. Reindl, K. Schäffner, J. Schieck, S. Schönert, W. Seidel, L. Stodolsky, C. Strandhagen, R. Strauss, et al., Eur. Phys. J. C 2016, 76, 25.
- 15C. Amole, M. Ardid, I. J. Arnquist, D. M. Asner, D. Baxter, E. Behnke, P. Bhattacharjee, H. Borsodi, M. Bou-Cabo, P. Campion, G. Cao, C. J. Chen, U. Chowdhury, K. Clark, J. I. Collar, P. S. Cooper, M. Crisler, G. Crowder, C. E. Dahl, M. Das, S. Fallows, J. Farine, I. Felis, R. Filgas, F. Girard, G. Giroux, J. Hall, O. Harris, E. W. Hoppe, M. Jin, et al., Phys. Rev. Lett. 2017, 118, 251301.
- 16S. Baum, A. K. Drukier, K. Freese, M. Górski, P. Stengel, Phys. Lett. B 2020, 803, 135325.
- 17J. Aalbers, D. S. Akerib1, C. W. Akerlof, A. K. Al Musalhi, F. Alder, A. Alqahtani, S. K. Alsum, C. S. Amarasinghe, A. Ames, T. J. Anderson, N. Angelides, H. M. Araújo, J. E. Armstrong, M. Arthurs, S. Azadi, A. J. Bailey, A. Baker, J. Balajthy, S. Balashov, J. Bang, J. W. Bargemann, M. J. Barry, J. Barthel, D. Bauer, A. Baxter, K. Beattie, J. Belle, P. Beltrame, J. Bensinger, T. Benson, et al., Phys. Rev. Lett. 2023, 131, 041002.
- 18T. Lacroix, J. Silk, Astron. Astrophys. 2013, 554, A36.
10.1051/0004-6361/201220753 Google Scholar
- 19R. Kumar, B. P. Singh, M. S. Ali, S. G. Ghosh, Phys. Dark Univ. 2021, 34, 100881.
10.1016/j.dark.2021.100881 Google Scholar
- 20F. Atamurotov, K. Jusufi, M. Jamil, A. Abdujabbarov, M. Azreg-Aïnou, Phys. Rev. D 2021, 104, 064053.
- 21T.-C. Ma, H.-X. Zhang, P.-Z. He, H.-R. Zhang, Y. Chen, J.-B. Deng, Mod. Phys. Lett. A 2021, 36, 2150112.
- 22K. Saurabh, K. Jusufi, Eur. Phys. J. C 2021, 81, 490.
- 23A. Das, A. Saha, S. Gangopadhyay, Class. Quant. Grav. 2021, 38, 065015.
- 24F. Atamurotov, U. Papnoi, K. Jusufi, Class. Quant. Grav. 2022, 39, 025014.
10.1088/1361-6382/ac3e76 Google Scholar
- 25S. Nampalliwar, S. Kumar, K. Jusufi, Q. Wu, M. Jamil, P. Salucci, Astrophys. J. 2021, 916, 116.
- 26G. Mustafa, S. K. Maurya, S. Ray, Fortsch. Phys. 2023, 71, 2200129.
10.1002/prop.202200129 Google Scholar
- 27G. Rakhimova, F. Atamurotov, F. Javed, A. Abdujabbarov, G. Mustafa, Nucl. Phys. B 2023, 996, 116363.
- 28R. C. Pantig, A. Övgün, J. Cosmol. Astropart. Phys. 2022, 08, 056.
10.1088/1475-7516/2022/08/056 Google Scholar
- 29R. C. Pantig, A. Övgün, Fortsch. Phys. 2023, 71, 2200164.
- 30V. Cardoso, T. Ikeda, R. Vicente, M. Zilhão, Phys. Rev. D 2022, 106, L121302.
- 31R. A. Konoplya, Phys. Lett. B 2019, 795, 1.
- 32R. A. Konoplya, A. Zhidenko, Astrophys. J. 2022, 933, 166.
- 33X. Hou, Z. Xu, M. Zhou, J. Wang, J. Cosmol. Astropart. Phys. 2018, 07, 015.
10.1088/1475-7516/2018/07/015 Google Scholar
- 34X. Hou, Z. Xu, J. Wang, J. Cosmol. Astropart. Phys. 2018, 12, 040.
10.1088/1475-7516/2018/12/040 Google Scholar
- 35Z. Xu, X. Gong, S.-N. Zhang, Phys. Rev. D 2020, 101, 024029.
- 36Z. Xu, X. Hou, X. Gong, J. Wang, J. Cosmol. Astropart. Phys. 2018, 09, 038.
10.1088/1475-7516/2018/09/038 Google Scholar
- 37Z. Xu, X. Hou, J. Wang, J. Cosmol. Astropart. Phys. 2018, 10, 046.
- 38Z. Xu, J. Wang, M. Tang, J. Cosmol. Astropart. Phys. 2021, 09, 007.
- 39A. Anjum, M. Afrin, S. G. Ghosh, Phys. Dark Univ. 2023, 40, 101195.
10.1016/j.dark.2023.101195 Google Scholar
- 40J. Rayimbaev, S. Shaymatov, M. Jamil, Eur. Phys. J. C 2021, 81, 699.
- 41S. Shaymatov, B. Ahmedov, M. Jamil, Eur. Phys. J. C 2021, 81, 588.
Erratum: Eur. Phys. J. C 2021, 81, 724.
10.1140/epjc/s10052-021-09499-6 Google Scholar
- 42S. H. Hendi, A. Nemati, K. Lin, M. Jamil, Eur. Phys. J. C 2020, 80, 296.
- 43M. Rizwan, M. Jamil, K. Jusufi, Phys. Rev. D 2019, 99, 024050.
- 44A. Addazi, J. Alvarez-Muniz, R. Alves Batista, G. Amelino-Camelia, V. Antonelli, M. Arzano, M. Asorey, J.-L. Atteia, S. Bahamonde, F. Bajardi, A. Ballesteros, B. Baret, D. M. Barreiros, S. Basilakos, D. Benisty, O. Birnholtz, J. J. Blanco-Pillado, D. Blas, J. Bolmont, D. Boncioli, P. Bosso, G. Calcagni, S. Capozziello, J. M. Carmona, S. Cerci, M. Chernyakova, S. Clesse, J. A. B. Coelho, S. M. Colak, J. L. Cortes, et al., Prog. Part. Nucl. Phys. 2022, 125, 103948.
10.1016/j.ppnp.2022.103948 Google Scholar
- 45S. Das, M. Fridman, Phys. Rev. D 2021, 104, 026014.
- 46P. Jizba, G. Lambiase, G. G. Luciano, L. Petruzziello, Phys. Rev. D 2023, 108, 064024.
- 47Y. Chen, X. Xue, R. Brito, V. Cardoso, Phys. Rev. Lett. 2023, 130, 111401.
- 48M. Maggiore, Phys. Rev. D 1994, 49, 5182.
- 49A. Kempf, G. Mangano, R. B. Mann, Phys. Rev. D 1995, 52, 1108.
- 50F. Scardigli, Phys. Lett. B 1999, 452, 39.
- 51G. Lambiase, R. C. Pantig, D. J. Gogoi, A. Övgün, Eur. Phys. J. C 2023, 83, 679.
- 52G. Lambiase, F. Scardigli, Phys. Rev. D 2022, 105, 124054.
- 53O. Ökcü, E. Aydiner, Nucl. Phys. B 2021, 964, 115324.
10.1016/j.nuclphysb.2021.115324 Google Scholar
- 54K. Jusufi, M. Azreg-Aïnou, M. Jamil, T. Zhu, Int. J. Geom. Meth. Mod. Phys. 2022, 19, 2250068.
10.1142/S0219887822500682 Google Scholar
- 55P. Bosso, M. Fridman, G. G. Luciano, Front. Astron. Space Sci. 2022, 9, 932276.
10.3389/fspas.2022.932276 Google Scholar
- 56K. C. Freeman, Astrophys. J. 1970, 160, 811.
- 57Y. C. Ong, J. Cosmol. Astropart. Phys. 2018, 09, 015.
10.1088/1475-7516/2018/09/015 Google Scholar
- 58I. Pikovski, M. R. Vanner, M. Aspelmeyer, M. Kim, C. Brukner, Nature Phys. 2012, 8, 393.
- 59F. Scardigli, G. Lambiase, E. Vagenas, Phys. Lett. B 2017, 767, 242.
- 60P. Bosso, S. Das, I. Pikovski, M. R. Vanner, Phys. Rev. A 2017, 96, 023849.
10.1103/PhysRevA.96.023849 Google Scholar
- 61S. P. Kumar, M. B. Plenio, Phys. Rev. A 2018, 97, 063855.
- 62S. Das, M. Fridman, G. Lambiase, E. C. Vagenas, Phys. Lett. B 2022, 824, 136841.
- 63V. Nenmeli, S. Shankaranarayanan, V. Todorinov, S. Das, Phys. Lett. B 2021, 821, 136621.
- 64P. Jizba, H. Kleinert, F. Scardigli, Phys. Rev. D 2010, 81, 084030.
10.1103/PhysRevD.81.084030 Google Scholar
- 65L. Buoninfante, G. G. Luciano, L. Petruzziello, Eur. Phys. J. C 2019, 79, 663.
10.1140/epjc/s10052-019-7164-y Google Scholar
- 66P. Jizba, G. Lambiase, G. G. Luciano, L. Petruzziello, Phys. Rev. D 2022, 105, L121501.
- 67J. F. Navarro, C. S. Frenk, S. D. M. White, Astrophys. J. 1996, 462, 563.
- 68B. Moore, S. Ghigna, F. Governato, G. Lake, T. R. Quinn, J. Stadel, P. Tozzi, Astrophys. J. Lett. 1999, 524, L19.
- 69V. Springel, J. Wang, M. Vogelsberger, A. Ludlow, A. Jenkins, A. Helmi, J. F. Navarro, C. S. Frenk, S. D. M. White, Mon. Not. Roy. Astron. Soc. 2008, 391, 1685.
- 70A. Suárez, V. H. Robles, T. Matos, Astrophys. Space Sci. Proc. 2014, 38, 107.
10.1007/978-3-319-02063-1_9 Google Scholar
- 71M. Persic, P. Salucci, F. Stel, Mon. Not. Roy. Astron. Soc. 1996, 281, 27.
- 72V. Perlick, O. Y. Tsupko, G. S. Bisnovatyi-Kogan, Phys. Rev. D 2015, 92, 104031.
- 73V. Perlick, O. Y. Tsupko, Phys. Rep. 2022, 947, 1.
- 74A. Abdujabbarov, B. Toshmatov, Z. Stuchlík, B. Ahmedov, Int. J. Mod. Phys. D 2016, 26, 1750051.
10.1142/S0218271817500511 Google Scholar
- 75R. C. Pantig, A. Övgün, Ann. Phys. 2023, 448, 169197.
- 76P. Kocherlakota, L. Rezzolla, H. Falcke, C. M. Fromm, M. Kramer, Y. Mizuno, A. Nathanail, H. Olivares, Z. Younsi, K. Akiyama, A. Alberdi, W. Alef, J. Carlos Algaba, R. Anantua, K. Asada, R. Azulay, A.-K. Baczko, D. Ball, M. Balokovic, J. Barrett, B. A. Benson, D. Bintley, L. Blackburn, R. Blundell, W. Boland, K. L. Bouman, G. C. Bower, H. Boyce, M. Bremer, C. D. Brinkerink, et al., Phys. Rev. D 2021, 103, 104047.
- 77S. Vagnozzi, R. Roy, Y.-D. Tsai, L. Visinelli, M. Afrin, A. Allahyari, P. Bambhaniya, D. Dey, S. G. Ghosh, P. S. Joshi, K. Jusufi, M. Khodadi, R. K. Walia, A. Övgün, C. Bambi, et al., Class. Quant. Grav. 2023, 40, 165007.
10.1088/1361-6382/acd97b Google Scholar
- 78V. I. Dokuchaev, N. O. Nazarova, Usp. Fiz. Nauk 2020, 190, 627.
10.3367/UFNr.2020.01.038717 Google Scholar
- 79R. C. Pantig, A. Övgün, Eur. Phys. J. C 2022, 82, 391.
- 80P. Jizba, G. Lambiase, G. G. Luciano, L. Petruzziello, J. Phys.: Conf. Ser. 2023, 2533, 012043.
10.1088/1742-6596/2533/1/012043 Google Scholar