Propagation of Electron Airy Tornado Waves in Free Space and in a Uniform Magnetic Field
Huilin Tang
School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006 China
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou, 510631 China
Search for more papers by this authorZhifeng Tu
School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006 China
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou, 510631 China
Search for more papers by this authorJunjie Jiang
School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006 China
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou, 510631 China
Search for more papers by this authorHaoyu Huang
Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 China
Search for more papers by this authorJiajia Zhao
School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006 China
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou, 510631 China
Search for more papers by this authorShigen Ouyang
School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006 China
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou, 510631 China
Search for more papers by this authorXiangbo Yang
School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006 China
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou, 510631 China
Search for more papers by this authorHongzhan Liu
School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006 China
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou, 510631 China
Search for more papers by this authorGuanghui Wang
School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006 China
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou, 510631 China
Search for more papers by this authorCorresponding Author
Dongmei Deng
School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006 China
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou, 510631 China
E-mail: [email protected]
Search for more papers by this authorHuilin Tang
School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006 China
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou, 510631 China
Search for more papers by this authorZhifeng Tu
School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006 China
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou, 510631 China
Search for more papers by this authorJunjie Jiang
School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006 China
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou, 510631 China
Search for more papers by this authorHaoyu Huang
Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 China
Search for more papers by this authorJiajia Zhao
School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006 China
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou, 510631 China
Search for more papers by this authorShigen Ouyang
School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006 China
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou, 510631 China
Search for more papers by this authorXiangbo Yang
School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006 China
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou, 510631 China
Search for more papers by this authorHongzhan Liu
School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006 China
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou, 510631 China
Search for more papers by this authorGuanghui Wang
School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006 China
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou, 510631 China
Search for more papers by this authorCorresponding Author
Dongmei Deng
School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006 China
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou, 510631 China
E-mail: [email protected]
Search for more papers by this authorAbstract
In this paper, a new type of structured electron beam is introduced, which is the electron Airy tornado wave (eATW) with the characteristics of abrupt auto-focusing and rotation property in free space. It is also found that the eATWs propagate periodically in a magnetic field, and their patterns of intensity distributions show the time-like axial symmetry about a half-period point in a period of time. Furthermore, the influence of the magnetic field's magnitude and direction on eATWs with different parameters has also been discussed.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1M. Abramowitz, I. A. Stegun, R. H. Romer, American J. Phys. 1988, 56, 958.
10.1119/1.15378 Google Scholar
- 2M. V. Berry, N. L. Balazs, Am. J. Phys. 1979, 47, 264.
- 3G. A. Siviloglou, D. N. Christodoulides, Opt. Lett. 2007, 32, 979.
- 4G. Siviloglou, J. Broky, A. Dogariu, D. Christodoulides, Phys. Rev. Lett. 2007, 99, 213901.
- 5N. K. Efremidis, D. N. Christodoulides, Opt. Lett. 2010, 35, 4045.
- 6D. G. Papazoglou, N. K. Efremidis, D. N. Christodoulides, S. Tzortzakis, Opt. Lett. 2011, 36, 1842.
- 7A. Brimis, K. G. Makris, D. G. Papazoglou, Opt. Lett. 2020, 45, 280.
- 8J. Jiang, D. Xu, Z. Mo, X. Cai, H. Huang, Y. Zhang, H. Yang, H. Huang, Y. Wu, L. Shui, D. Deng, Opt. Express 2022, 30, 11331.
- 9L. Chen, L.-G. Wang, Opt. Lett. 2022, 47, 2109.
- 10A. Brimis, K. G. Makris, D. G. Papazoglou, Opt. Express 2023, 31, 27582.
- 11D. Mansour, A. Brimis, K. G. Makris, D. G. Papazoglou, Phys. Rev. A 2022, 105, 053514.
- 12S. Lloyd, M. Babiker, G. Thirunavukkarasu, J. Yuan, Rev. Mod. Phys. 2017, 89, 035004.
- 13K. Y. Bliokh, I. P. Ivanov, G. Guzzinati, L. Clark, R. Van Boxem, A. Béché, R. Juchtmans, M. A. Alonso, P. Schattschneider, F. Nori, J. Verbeeck, Phys. Rep. 2017, 690, 1.
- 14V. Grillo, E. Karimi, G. C. Gazzadi, S. Frabboni, M. R. Dennis, R. W. Boyd, Phys. Rev. X 2014, 4, 011013.
- 15B. J. McMorran, A. Agrawal, I. M. Anderson, A. Herzing, H. J. Lezec, J. J. McClelland, J. Unguris, in Quantum Electronics and Laser Science Conference, Optical Society of America 2011, p. QMA1.
- 16N. Voloch-Bloch, Y. Lereah, Y. Lilach, A. Gover, A. Arie, Nature 2013, 494, 331.
- 17K. Y. Bliokh, P. Schattschneider, J. Verbeeck, F. Nori, Phys. Rev. X 2012, 2, 041011.
- 18T. Schachinger, S. Löffler, M. Stöger-Pollach, P. Schattschneider, Ultramicroscopy 2015, 158, 17.
- 19G. Guzzinati, P. Schattschneider, K. Y. Bliokh, F. Nori, J. Verbeeck, Phys. Rev. Lett. 2013, 110, 093601.
- 20C. Greenshields, R. L. Stamps, S. Franke-Arnold, New J. Phys. 2012, 14, 103040.
- 21P. Schattschneider, T. Schachinger, M. Stöger-Pollach, S. Löffler, A. Steiger-Thirsfeld, K. Y. Bliokh, F. Nori, Nat. Commun. 2014, 5, 1.
- 22M. Goutsoulas, N. K. Efremidis, Phys. Rev. A 2021, 103, 013519.
- 23G. M. Gallatin, B. McMorran, Phys. Rev. A 2012, 86, 012701.
10.1103/PhysRevA.86.012701 Google Scholar
- 24Y. Wang, C. Jia, P. Zhang, Appl. Phys. Lett. 2021, 118, 082405.
- 25J. Verbeeck, H. Tian, G. Van Tendeloo, Adv. Mater. 2013, 25, 1114.
- 26V. Grillo, T. R. Harvey, F. Venturi, J. S. Pierce, R. Balboni, F. Bouchard, G. Carlo Gazzadi, S. Frabboni, A. H. Tavabi, Z.-A. Li, R. E. Dunin-Borkowski, R. W. Boyd, B. J. McMorran, K. Ebrahim, Nat. Commun. 2017, 8, 1.