Josephson and Persistent Currents in a Quantum Ring between Topological Superconductors
Corresponding Author
Fabián Medina
Departamento de Física, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso, Chile
E-mail: [email protected]
Search for more papers by this authorJuan Pablo Ramos-Andrade
Departamento de Física, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso, Chile
Search for more papers by this authorLuis Rosales
Departamento de Física, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso, Chile
Search for more papers by this authorPedro Orellana
Departamento de Física, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso, Chile
Search for more papers by this authorCorresponding Author
Fabián Medina
Departamento de Física, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso, Chile
E-mail: [email protected]
Search for more papers by this authorJuan Pablo Ramos-Andrade
Departamento de Física, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso, Chile
Search for more papers by this authorLuis Rosales
Departamento de Física, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso, Chile
Search for more papers by this authorPedro Orellana
Departamento de Física, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso, Chile
Search for more papers by this authorAbstract
In this work, the spectra in an Aharonov–Bohm quantum-ring interferometer forming a Josephson junction between two topological superconductor (TSC) nanowires are investigated. The TSCs host Majorana bound states at their edges, and both the magnetic flux and the superconducting phase difference between the TSCs are used as control parameters. A tight-binding approach is used to model the quantum ring coupled to both TSCs, described by the Kitaev effective Hamiltonian. The problem is solved by means of exact numerical diagonalization of the Bogoliubov-de Gennes Hamiltonian and obtain the spectra for two sizes of the quantum ring as a function of the magnetic flux and the phase difference between the TSCs. Depending on the size of the quantum ring and the coupling, the spectra display several patterns. Those are denoted as line, point, and undulated nodes, together with flat bands, which are topologically protected. The first three patterns can be possibly detected by means of persistent and Josephson currents. Hence, the results could be useful to understand the spectra and their relation with the behavior of the current signals.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
References
- 1M. Z. Hasan, C. L. Kane, Rev. Mod. Phys. 2010, 82, 3045.
- 2X.-L. Qi, S.-C. Zhang, Rev. Mod. Phys. 2011, 83, 1057.
- 3M. Sato, Y. Ando, Rep. Prog. Phys. 2017, 80, 076501.
- 4L. Lu, Z. Wang, D. Ye, L. Ran, L. Fu, J. D. Joannopoulos, M. Soljačić, Science 2015, 349, 622.
- 5S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, R. Sankar, F. Chou, C.-H. Hsu, H.-T. Jeng, A. Bansil, T. Neupert, V. N. Strocov, H. Lin, S. Jia, M. Z. Hasan, Science 2015, 349, 613.
- 6A. A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer, X. Dai, B. A. Bernevig, Nature 2015, 527, 495.
- 7C.-K. Chiu, J. C. Teo, A. P. Schnyder, S. Ryu, Rev. Mod. Phys. 2016, 88, 035005.
- 8P. Kotetes, New J. Phys. 2013, 15, 105027.
- 9A. P. Schnyder, S. Ryu, A. Furusaki, A. W. Ludwig, Phys. Rev. B 2008, 78, 195125.
- 10A. Y. Kitaev, Phys.-Usp. 2001, 44, 131.
10.1070/1063-7869/44/10S/S29 Google Scholar
- 11A. Alecce, L. Dell'Anna, Phys. Rev. B 2017, 95, 195160.
- 12J.-J. Miao, H.-K. Jin, F.-C. Zhang, Y. Zhou, Phys. Rev. Lett. 2017, 118, 267701.
- 13A. Matos-Abiague, J. Shabani, A. D. Kent, G. L. Fatin, B. Scharf, I. Žutić, Solid State Commun. 2017, 262, 1.
- 14J. Alicea, Y. Oreg, G. Refael, F. Von Oppen, M. P. Fisher, Nat. Phys. 2011, 7, 412.
- 15S. D. Sarma, M. Freedman, C. Nayak, npj Quantum Inf. 2015, 1, 15001.
- 16B. Van Heck, A. Akhmerov, F. Hassler, M. Burrello, C. Beenakker, New J. Phys. 2012, 14, 035019.
- 17V. Mourik, K. Zuo, S. M. Frolov, S. Plissard, E. P. Bakkers, L. P. Kouwenhoven, Science 2012, 336, 1003.
- 18M. Deng, C. Yu, G. Huang, M. Larsson, P. Caroff, H. Xu, Nano Lett. 2012, 12, 6414.
- 19M. Nishiyama, Y. Inada, G.-q. Zheng, Phys. Rev. Lett. 2007, 98, 047002.
- 20J.-K. Bao, J.-Y. Liu, C.-W. Ma, Z.-H. Meng, Z.-T. Tang, Y.-L. Sun, H.-F. Zhai, H. Jiang, H. Bai, C.-M. Feng, Z.-A. Xu, G.-H. Cao, Phys. Rev. X 2015, 5, 011013.
- 21M. Eschrig, Rep. Prog. Phys. 2015, 78, 104501.
- 22A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, H. Shtrikman, Nat. Phys. 2012, 8, 887.
- 23F. Domínguez, J. Cayao, P. San-Jose, R. Aguado, A. L. Yeyati, E. Prada, npj Quantum Mater. 2017, 2, 13.
- 24R. M. Lutchyn, E. P. Bakkers, L. P. Kouwenhoven, P. Krogstrup, C. M. Marcus, Y. Oreg, Nat. Rev. Mater. 2018, 3, 52.
- 25J. S. Meyer, M. Houzet, Phys. Rev. Lett. 2017, 119, 136807.
- 26H.-Y. Xie, M. G. Vavilov, A. Levchenko, Phys. Rev. B 2017, 96, 161406.
- 27R.-P. Riwar, M. Houzet, J. S. Meyer, Y. V. Nazarov, Nat. Commun. 2016, 7, 11167.
- 28H.-Y. Xie, M. G. Vavilov, A. Levchenko, Phys. Rev. B 2018, 97, 035443.
- 29F. Zhang, C. Kane, Phys. Rev. B 2014, 90, 020501.
- 30K. Sakurai, M. T. Mercaldo, S. Kobayashi, A. Yamakage, S. Ikegaya, T. Habe, P. Kotetes, M. Cuoco, Y. Asano, Phys. Rev. B 2020, 101, 174506.
- 31M. Houzet, J. S. Meyer, Phys. Rev. B 2019, 100, 014521.
- 32P. Kotetes, M. T. Mercaldo, M. Cuoco, Phys. Rev. Lett. 2019, 123, 126802.
- 33C. Nayak, S. H. Simon, A. Stern, M. Freedman, S. D. Sarma, Rev. Mod. Phys. 2008, 80, 1083.
- 34J. D. Sau, D. J. Clarke, S. Tewari, Phys. Rev. B 2011, 84, 094505.
- 35W.-C. Huang, Q.-F. Liang, D.-X. Yao, Z. Wang, Phys. Rev. A 2015, 92, 012308.
- 36Z. Wang, W.-C. Huang, Q.-F. Liang, X. Hu, Sci. Rep. 2018, 8, 7920.
- 37M. Trif, O. Dmytruk, H. Bouchiat, R. Aguado, P. Simon, Phys. Rev. B 2018, 97, 041415.
- 38C. Malciu, L. Mazza, C. Mora, Phys. Rev. B 2018, 98, 165426.
- 39T. Hyart, B. Van Heck, I. Fulga, M. Burrello, A. Akhmerov, C. Beenakker, Phys. Rev. B 2013, 88, 035121.
- 40E. Vernek, P. Penteado, A. Seridonio, J. Egues, Phys. Rev. B 2014, 89, 165314.
- 41D. E. Liu, H. U. Baranger, Phys. Rev. B 2011, 84, 201308.
- 42M.-T. Deng, S. Vaitiekėnas, E. Prada, P. San-Jose, J. Nygård, P. Krogstrup, R. Aguado, C. Marcus, Phys. Rev. B 2018, 98, 085125.
- 43F. Medina, J. P. Ramos-Andrade, L. Rosales, P. Orellana, Ann. Phys. 2020, 532, 2000199.
- 44A. Nava, R. Giuliano, G. Campagnano, D. Giuliano, Phys. Rev. B 2017, 95, 155449.
- 45C.-K. Chiu, J. D. Sau, S. D. Sarma, Phys. Rev. B 2018, 97, 035310.
- 46Z. Liu, J. Jiang, B. Zhou, Z. Wang, Y. Zhang, H. Weng, D. Prabhakaran, S. K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, Y. L. Chen, Nat. Mater. 2014, 13, 677.
- 47M. Neupane, S.-Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, F. Chou, M. Zahid, Nat. Commun. 2014, 5, 3786.
- 48S. D. Sarma, J. D. Sau, T. D. Stanescu, Phys. Rev. B 2012, 86, 220506.
- 49D. Rainis, L. Trifunovic, J. Klinovaja, D. Loss, Phys. Rev. B 2013, 87, 024515.
- 50J. Danon, E. B. Hansen, K. Flensberg, Phys. Rev. B 2017, 96, 125420.
- 51L. Ricco, V. Campo Jr, I. Shelykh, A. Seridonio, Phys. Rev. B 2018, 98, 075142.
- 52M. Sato, Y. Tanaka, K. Yada, T. Yokoyama, Phys. Rev. B 2011, 83, 224511.
- 53A. Whiticar, A. Fornieri, E. O'Farrell, A. Drachmann, T. Wang, C. Thomas, S. Gronin, R. Kallaher, G. Gardner, M. Manfra, C. M. Marcus, F. Nichele, Nat. Commun. 2020, 11, 3212.
- 54H. Potts, I.-J. Chen, A. Tsintzis, M. Nilsson, S. Lehmann, K. A. Dick, M. Leijnse, C. Thelander, Nat. Commun. 2019, 10, 5740.
- 55V. Fatemi, A. R. Akhmerov, L. Bretheau, Phys. Rev. Res. 2021, 3, 013288.
- 56J. C. Teo, C. L. Kane, Phys. Rev. B 2010, 82, 115120.
- 57C. Beenakker, D. Pikulin, T. Hyart, H. Schomerus, J. Dahlhaus, Phys. Rev. Lett. 2013, 110, 017003.
- 58M. Keck, D. Rossini, R. Fazio, Phys. Rev. A 2018, 98, 053812.
- 59H.-M. Li, J.-L. Xiao, Phys. B 2007, 396, 91.
- 60S. K. Maiti, S. Saha, S. Karmakar, Eur. Phys. J. B 2011, 79, 209.
- 61M. Deng, S. Vaitiekėnas, E. B. Hansen, J. Danon, M. Leijnse, K. Flensberg, J. Nygård, P. Krogstrup, C. M. Marcus, Science 2016, 354, 1557.
- 62E. Prada, R. Aguado, P. San-Jose, Phys. Rev. B 2017, 96, 085418.
- 63S. Vaitiekėnas, G. Winkler, B. van Heck, T. Karzig, M.-T. Deng, K. Flensberg, L. Glazman, C. Nayak, P. Krogstrup, R. Lutchyn, C. M. Marcus, Science 2020, 367, eaav3392.
- 64A. Bleszynski-Jayich, W. Shanks, B. Peaudecerf, E. Ginossar, F. Von Oppen, L. Glazman, J. Harris, Science 2009, 326, 272.
- 65N. Pankratova, H. Lee, R. Kuzmin, K. Wickramasinghe, W. Mayer, J. Yuan, M. G. Vavilov, J. Shabani, V. E. Manucharyan, Phys. Rev. X 2020, 10, 031051.
- 66A. W. Draelos, M.-T. Wei, A. Seredinski, H. Li, Y. Mehta, K. Watanabe, T. Taniguchi, I. V. Borzenets, F. Amet, G. Finkelstein, Nano Lett. 2019, 19, 1039.
- 67G. V. Graziano, J. S. Lee, M. Pendharkar, C. J. Palmstrøm, V. S. Pribiag, Phys. Rev. B 2020, 101, 054510.
- 68V. Kornich, X. Huang, E. Repin, Y. V. Nazarov, Phys. Rev. Lett. 2021, 126, 117701.