Passive Harmonic Mode-Locked Erbium-Doped Fiber Laser Based on ZrTe3 Nanoparticle-Based Saturable Absorber
Corresponding Author
Zhanqiang Hui
School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi, 710121 P. R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorNiping Shen
School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi, 710121 P. R. China
Search for more papers by this authorYuanhong Wang
School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi, 710121 P. R. China
Search for more papers by this authorCorresponding Author
Dongdong Han
School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi, 710121 P. R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorTiantian Li
School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi, 710121 P. R. China
Search for more papers by this authorHua Zhou
School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi, 710121 P. R. China
Search for more papers by this authorJiamin Gong
School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi, 710121 P. R. China
Search for more papers by this authorCorresponding Author
Zhanqiang Hui
School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi, 710121 P. R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorNiping Shen
School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi, 710121 P. R. China
Search for more papers by this authorYuanhong Wang
School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi, 710121 P. R. China
Search for more papers by this authorCorresponding Author
Dongdong Han
School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi, 710121 P. R. China
E-mail: [email protected], [email protected]
Search for more papers by this authorTiantian Li
School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi, 710121 P. R. China
Search for more papers by this authorHua Zhou
School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi, 710121 P. R. China
Search for more papers by this authorJiamin Gong
School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi, 710121 P. R. China
Search for more papers by this authorAbstract
2D layer-structured nanomaterials have attracted much attention owing to their excellent optical, electrical, and magnetic properties. In this study, a novel 2D zirconium tritelluride (ZrTe3) nanosheet material is prepared. The nonlinear saturated absorption characteristics of the ZrTe3 nanosheets are studied using the double-equilibrium detection method. The saturation intensity and modulation depth are 100.6 MW cm−2 and 3.3%, respectively. A saturable absorber (SA) based on ZrTe3 is used in a harmonic passive mode-locking erbium-doped fiber laser for the first time. The results show that when the pump power is 50 mW, mode-locking with a fundamental frequency of 5.82 MHz is achieved. The pulse width, center wavelength, 3 dB bandwidth, and signal-to-noise ratio (SNR) are 1.44 ps, 1563.7 nm, 2.31 nm, and 76 dB, respectively. With an increase in pump power, a high repetition rate of 483.1 MHz, corresponding to the 83-order harmonic mode-locked, is obtained at a pump power of 310 mW. The pulse width, 3 dB optical spectral width, and SNR are 1.302 ps, 3.14 nm, and 67 dB, respectively. This reveals that ZrTe3 nanosheets are excellent photonic materials that can be used to generate high-repetition-rate pulse lasers and have great application potential in ultrafast photonics.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
References
- 1A. B. Kaul, Perspect. Polit. 2013, 1549, 11.
- 2Y. X. Xu, K. X. Sheng, C. Li, G. Q. Shi, ACS Nano 2010, 4, 4324.
- 3K. Chang, W. X. Chen, ACS Nano 2011, 5, 4720.
- 4A. Martinez, S. J. Yamashita, Appl. Phys. Lett. 2012, 101, 041118.
- 5P. L. Huang, S. C. Lin, C. Y. Yeh, H. H. Kuo, S. H. Huang, G. R. Lin, L. J. Li, C. Y. Su, W. H. Cheng, Opt. Express 2012, 20, 2460.
- 6Y. H. Lin, C. Y. Yang, J. H. Liou, C. P. Yu, G. R. Lin, Opt. Express 2013, 21, 16763.
- 7A. Fasolino, J. H. Los, M. I. Katsnelson, Nat. Mater. 2007, 6, 858.
- 8P. Forouzandeh, S. C. Pillai, Mater. Today: Proc. 2021, 41, 498.
- 9Z. Y. Wang, T. L. Feng, X. L. Ruan, J. Appl. Phys. 2015, 117, 084317.
- 10X. F. Xu, J. Chen, B. W. Li, J. Phys.: Condens. Matter 2016, 28, 483001.
- 11Z. Lv, N. Mahmood, M. Tahir, L. Pan, X. W. Zhang, J. J. Zou, Nanoscale 2016, 8, 18250.
- 12L. K. Li, Y. J. Yu, G. J. Ye, Q. Q. Ge, X. D. Ou, H. Wu, D. L. Feng, X. H. Chen, Y. B. Zhang, Nat. Nanotechnol. 2014, 9, 372.
- 13J. J. He, J. S. Wu, T. P. Choy, X. J. Liu, Y. Tanaka, K. T. Law, Nat. Commun. 2014, 5, 3232.
- 14J. Sotor, G. Sobon, W. Macherzynski, K. M. Abramski, Laser Phys. Lett. 2014, 11, 055102.
- 15Y. H. Lin, C. Y. Yang, S. F. Lin, W. H. Tseng, Q. L. Bao, C. I. Wu, G. R. Lin, Laser Phys. Lett. 2014, 5, 055107.
- 16Y. H. Lin, S. F. Lin, Y. C. Chi, C. L. Wu, C. H. Cheng, W. H. Tseng, J. H. He, C. I. Wu, C. K. Lee, G. R. Lin, ACS Photonics. 2015, 2, 481.
- 17J. Lee, J. Koo, Y. M. Jhon, J. H. Lee, Opt. Express 2014, 22, 6165.
- 18Q. K. Hu, D. D. Sun, Q. H. Wu, H. Y. Wang, L. B. Wang, B. Z. Liu, A. G. Zhou, J. L. He, J. Phys. Chem. A 2013, 117, 14253.
- 19J. J. Feng, X. H. Li, T. C. Feng, Y. M. Wang, J. Liu, H. Zhang, Ann. Phys. 2020, 532, 1900437.
- 20Y. Guo, F. Pan, M. Ye, X. T. Sun, Y. Y. Wang, J. Z. Li, X. Y. Zhang, H. Zhang, Y. Y. Pan, Z. G. Song, J. B. Yang, J. Lu, ACS Appl. Mater. Interfaces 2017, 9, 23128.
- 21W. X. Xu, P. L. Guo, X. H. Li, Z. Q. Hui, Y. M. Wang, Z. J. Shi, Y. Q. Shu, Nanotechnology 2020, 31, 225209.
- 22Q. Y. Zhao, Y. H. Guo, Y. X. Zhou, Z. H. Yao, Z. Y. Ren, J. T. Bai, X. L. Xu, Nanoscale 2018, 10, 3547.
- 23Z. Q. Li, X. Z. Shi, C. Y. He, T. Ouyang, J. Li, C. X. Zhang, S. F. Zhang, C. Tang, R. A. Römer, J. X. Zhong, Appl. Surf. Sci. 2019, 497, 143803.
- 24S. Zhou, J. J. Zhao, Nanoscale 2016, 8, 8910.
- 25Z. P. Sun, A. Martinez, F. Wang, Nat. Photonics 2016, 10, 227.
- 26J. J. Shan, J. H. Li, X. Y. Chu, M. Z. Xu, F. J. Jin, IOP Conf. Ser.: Mater. Sci. Eng. 2018, 382, 022070.
10.1088/1757-899X/382/2/022070 Google Scholar
- 27M. Gehlmann, I. Aguilera, G. Bihlmayer, S. Nemsak, P. Nagler, P. Gospodaric, G. Zamborlini, M. Eschbach, V. Feyer, F. Kronast, E. Mlynczak, T. Korn, L. Plucinski, C. Schüller, S. Bluegel, C. M. Schneider, Nano Lett. 2017, 17, 5187.
- 28P. Gaur, D. Sharma, N. Singh, B. P. Malik, A. Gaur, Spectrochim. Acta, Part A 2012, 97, 45.
- 29K. A. Min, J. Cha, K. Cho, S. Hong, 2D Mater. 2017, 4, 024006.
10.1088/2053-1583/aa5a99 Google Scholar
- 30T. J. Wieting, A. Grisel, F. Lévy, Physica B+C. 1981, 105, 366.
- 31C. Felser, E. W. Finckh, H. Kleinke, F. Rocker, W. Tremel, J. Mater. Chem. 1998, 8, 1787.
- 32C. S. Yadav, P. L. Paulose, J. Phys.: Condens. Matter 2012, 24, 235702.
- 33X. Y. Zhu, B. Lv, F. Y. Wei, Y. Y. Xue, B. Lorenz, L. Z. Deng, Y. Y. Sun, C. W. Chu, Phys. Rev. B 2013, 87, 024508.
- 34C. Mirri, A. Dusza, X. D. Zhu, H. C. Lei, H. Ryu, L. Degiorgi, C. Petrovic, Phys. Rev. B 2014, 89, 035144.
- 35X. D. Zhu, H. C. Lei, C. Petrovic, Phys. Rev. Lett. 2011, 106, 246404.
- 36C. Muratore, A. A. Voevodin, N. R. Glavin, Thin Solid Films 2019, 688, 137500.
- 37K. Gopinadhan, Y. J. Shin, R. Jalil, T. Venkatesan, A. K. Geim, A. H. C. Neto, H. Yang, Nat. Commun. 2015, 6, 8337.
- 38J. Hansknecht, M. Poelker, Phys. Rev. Spec. Top.– Accel. Beams 2006, 9, 063501.
10.1103/PhysRevSTAB.9.063501 Google Scholar
- 39R. Wu, V. Torres-Company, D. E. Leaird, A. M. Weiner, Opt. Express 2013, 21, 6045.
- 40T. Hasegawa, J. Opt. Soc. Am. B 2016, 33, 2057.
- 41K. R. Vogel, S. A. Diddams, C. W. Oates, E. A. Curtis, R. J. Rafac, W. M. Itano, J. C. Bergquist, R. W. Fox, W. D. Lee, J. S. Wells, L. Hollberg, Opt. Lett. 2001, 26, 102.
- 42G. Sobon, J. Sotor, K. M. Abramski, Appl. Phys. Lett. 2012, 100, 161109.
- 43A. Komarov, A. Haboucha, F. Sanchez, Opt. Lett. 2008, 33, 2254.
- 44A. A. Lagatsky, A. Choudhary, P. Kannan, D. P. Shepherd, W. Sibbett, C. T. A. Brown, Opt. Express 2013, 21, 19608.
- 45Q. Q. Kuang, L. Zhan, Z. Q. Wang, M. Huang, IEEE Photonics Technol. Lett. 2015, 27, 2205.
- 46C. S. Jun, S. Y. Choi, F. Rotermund, B. Y. Kim, D. I. Yeom, Opt. Lett. 2012, 37, 1862.
- 47F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, P. Grelu, F. Sanchez, Opt. Lett. 2009, 34, 2120.
- 48Z. Q. Hui, M. J. Qu, X. H. Li, Y. X. Guo, J. Q. Li, L. R. Jing, Z. Y. Wu, Nanotechnology. 2020, 31, 485706.
- 49B. Ortaç, M. Plötner, J. Limpert, A. Tünnermann, Appl. Phys. B 2010, 99, 79.
- 50M. Liu, X. W. Zheng, Y. L. Qi, H. Liu, A. P. Luo, Z. C. Luo, W. C. Xu, C. J. Zhao, H. Zhang, Opt. Express 2014, 22, 22841.
- 51Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, C. J. Zhao, H. Zhang, S. C. Wen, W. C. Xu, Opt. Lett. 2013, 24, 5212.
- 52Y. H. Lin, G. R. Lin, Laser Phys. Lett. 2012, 9, 398.
- 53M. L. Dennis, I. N. Duling, IEEE J. Quantum Electron. 1994, 30, 1469.
- 54D. D. Han, L. Yun, Laser Phys. 2012, 22, 1837.
- 55R. Weill, A. Bekker, V. Smulakovsky, B. Fischer, O. Gat, Phys. Rev. A 2011, 83, 43831.
- 56Y. H. Lin, G. R. Lin, Laser Phys. Lett. 2013, 10, 045109.