Edge States in 1D Rhombus Lattices
Jia-Rui Li
College of Sciences, Northeastern University, Shenyang, 110819 China
Search for more papers by this authorShu-Feng Zhang
School of Physics and Technology, University of Jinan, Jinan, 250022 China
Search for more papers by this authorLian-Lian Zhang
College of Sciences, Northeastern University, Shenyang, 110819 China
Search for more papers by this authorCorresponding Author
Wei-Jiang Gong
College of Sciences, Northeastern University, Shenyang, 110819 China
E-mail: [email protected]
Search for more papers by this authorJia-Rui Li
College of Sciences, Northeastern University, Shenyang, 110819 China
Search for more papers by this authorShu-Feng Zhang
School of Physics and Technology, University of Jinan, Jinan, 250022 China
Search for more papers by this authorLian-Lian Zhang
College of Sciences, Northeastern University, Shenyang, 110819 China
Search for more papers by this authorCorresponding Author
Wei-Jiang Gong
College of Sciences, Northeastern University, Shenyang, 110819 China
E-mail: [email protected]
Search for more papers by this authorAbstract
The band structure and topological properties of a 1D rhombus lattice are studied by defining three models according to the manners of intracell hopping amplitudes. Results show that in the presence of uniform intracell hopping amplitudes, degenerate topological edge states appear at the ends of the lattice. When the intracell hopping amplitudes change, the edge states change in different ways, but they are robust to a small amount of disorder. The inversion symmetry breaking modifies the degeneracy of the edge states and makes the edge states localized at one end of the lattice. Next, when local magnetic flux is introduced, the band structures of the three models are further modulated. New gaps can be opened and edge states can be induced with their different topological properties. This rhombus lattice can be a promising candidate for studying the edge states and their dependence on structural parameters and magnetic flux in 1D systems.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
References
- 1A. Bansil, H. Lin, T. Das, Rev. Mod. Phys. 2016, 88, 021004.
- 2M. Z. Hasan, C. L. Kane, Rev. Mod. Phys. 2010, 82, 3045.
- 3X. L. Qi, S. C. Zhang, Rev. Mod. Phys. 2011, 83, 1057.
- 4D. Z. Xie, W. Gou, T. Xiao, B. Gadway, B. Yan, npj Quantum Inf. 2019, 5, 55.
- 5B. Wang, T. Chen, X. Zhang, Phys. Rev. Lett. 2018, 121, 100501.
- 6C. Chen, X. Ding, J. Qin, Y. He, Y. H. Luo, M. C. Chen, C. Liu, X. L. Wang, W. J. Zhang, H. Li, L. X. You, Z. Wang, D. W. Wang, B. C. Sanders, C. Y. Lu, J. W. Pan, Phys. Rev. Lett. 2018, 121, 100502.
- 7D. W. Wang, C. Song, W. Feng, H. Cai, D. Xu, H. Deng, H. Li, D. Zheng, X. Zhu, H. Wang, S. Y. Zhu, M. O. Scully, Nat. Phys. 2019, 15, 382.
- 8X. L. Qi, S. C. Zhang, Rev. Mod. Phys. 2011, 83, 1057.
- 9M. Xiao, G. Ma, Z. Yang, P. Sheng, Z. Q. Zhang, C. T. Chan, Nat. Phys. 2015, 11, 240.
- 10Y. G. Peng, C. Z. Qin, D. G. Zhao, Y.-X. Shen, X.-Y. Xu, M. Bao, H. Jia, X.-F. Zhu, Nat. Comm. 2016, 7, 13368.
- 11B. K. Stuhl, H. I. Lu, L. M. Aycock, D. Genkina, I. B. Spielman, Science 2015, 349, 1514.
- 12E. J. Meier, F. A. An, B. Gadway, Nat. Comm. 2016, 7, 13986.
- 13H. Cai, J. H. Liu, J. Z. Wu, Y. Y. He, S. Y. Zhu, J. X. Zhang, D. W. Wang, Phys. Rev. Lett. 2019, 122, 023601.
- 14W. W. Zhu, S. S. Hou, Y. Long, H. Chen, J. Ren, Phys. Rev. B 2018, 97, 075310.
- 15J. Ningyuan, C. Owens, A. Sommer, D. Schuster, J. Simon, Phys. Rev. X 2015, 5, 021031.
- 16W. P. Su, J. R. Schrieffer, A. J. Heeger, Phys. Rev. Lett. 1979, 42, 1698.
- 17L. Wang, M. Troyer, X. Dai, Phys. Rev. Lett. 2013, 111, 026802.
- 18M. Leder, C. Grossert, L. Sitta, M. Genske, A. Rosch, M. Weitz, Nat. Comm. 2016, 7, 13112.
- 19M. Lohse, C. Schweizer, O. Zilberberg, M. Aidelsburger, I. Bloch, Nat. Phys. 2016, 12, 350.
- 20J. K. Asbóth, L. Oroszlány, A. Pályi, A Short Course on Topological Insulators: Band-Structure Topology and Edge States in One and Two Dimensions, Springer, Berlin 2016.
10.1007/978-3-319-25607-8 Google Scholar
- 21L. H. Li, Z. H. Xu, S. Chen, Phys. Rev. B 2014, 89, 085111.
- 22W. P. Su, J. R. Schrieffer, A. J. Heeger, Phys. Rev. B 1980, 22, 2099.
- 23M. Atala, M. Aidelsburger, J. T. Barreiro, D. Abanin, T. Kitagawa, E. Demler, I. Bloch, Nat. Phys. 2013, 9, 795.
- 24A. J. Heeger, S. Kivelson, J. R. Schrieffer, W. P. Su, Rev. Mod. Phys. 1988, 60, 781.
- 25C. K. Chiu, J. C. Y. Teo, A. P. Schnyder, S. Ryu, Rev. Mod. Phys. 2016, 88, 035005.
- 26R. Drost, T. Ojanen, A. Harju, P. Liljeroth, Nat. Phys. 2017, 13, 668.
- 27A. Gómez-Len, G. Platero, Phys. Rev. Lett. 2013, 110, 200403.
- 28V. Dal Lago, M. Atala, L. E. F. Foa Torres, Phys. Rev. A 2015, 92, 023624.
- 29B. Perez-Gonzalez, M. Bello, A. Gomez-Leon, G. Platero, Phys. Rev. B 2019, 99, 035146.
- 30F. A. An, E. J. Meier, B. Gadway, Phys. Rev. X 2018, 8, 031045.
- 31H. Guo, S. Chen, Phys. Rev. B 2015, 91, 041402.
- 32X. Liu, G. S. Agarwal, Sci. Rep. 2017, 7, 45015.
- 33L. Jin, Phys. Rev. A 2017, 96, 032103.
- 34M. N. Huda, S. Kezilebieke, T. Ojanen, R. Drost, P. Liljeroth, npj Quantum Mater. 2020, 5, 17.
- 35A. M. S. Macêdo, M. C. dos Santos, M. D. Coutinho-Filho, C. A. Macêdo, Phys. Rev. Lett. 1995, 74, 1851.
- 36R. R. Montenegro-Filho, M. D. Coutinho-Filho, Phys. Rev. B 2014, 90, 115123.
- 37M. Maffei, A. Dauphin, F. Cardano, M. Lewenstein, P. Massignan, New J. Phys. 2018, 20, 013023.
- 38Y. He, C. C. Chien, J. Phys.: Condens. Matter 2021, 33, 085501.
- 39G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, T. Esslinger, Nature 2014, 515, 237.
- 40F. X. Li, L. Sheng, D. Y. Xing, Europhys. Lett. 2008, 84, 60004.
10.1209/0295-5075/84/60004 Google Scholar
- 41G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, T. Esslinger, Nature 2014, 515, 237.
- 42C. Becker, P. Soltan-Panahi, J. Kronjäger, S. Dörscher, K. Bongs, K. Sengstock, New J. Phys. 2010, 12, 065025.
- 43S. j. Zhang, C. W. Zhang, S. F. Zhang, W. X. Ji, P. Li, P. J. Wang, S. S. Li, S. S. Yan, Phys. Rev. B 2017, 96, 205433.
- 44H. Xue, Y. Yang, F. Gao, Y. Chong, B. Zhang, Nat. Mater. 2018, 18, 108.
- 45G. B. Jo, J. Guzman, C. K. Thomas, P. Hosur, A. Vishwanath, D. M. Stamper-Kurn, Phys. Rev. Lett. 2012, 108, 045305.
- 46X. Ni, M. Weiner, A. Alù, A. Khanikaev, Nat. Mater. 2019, 18, 113.
- 47A. Hassan, F. Kunst, A. Moritz, G. Andler, E. Bergholtz, M. Bourennane, Nat. Photon. 2019, 13, 697.
- 48Y. Chen, X. Lu, H. Chen, Opt. Lett. 2019, 44, 4251.
- 49X. Y. Li, W. X. Ji, P. J. Wang, C. W. Zhang, Nanoscale Adv. 2021, 3, 847.
- 50G. Wirth, M. Oelschlaeger, A. Hemmerich, Nat. Phys. 2011, 7, 147.
- 51Y. P. Wang, W. X. Ji, C. W. Zhang, P. Li, S. F. Zhang, P. J. Wang, S. S. Li, S. S. Yan, Appl. Phys. Lett. 2017, 110, 213101.
- 52Z. F. Xu, L. You, A. Hemmerich, W. V. Liu, Phys. Rev. Lett. 2016, 117, 085301.
- 53N. Ahmadi, J. Abouie, Phys. Rev. B 2020, 101, 195117.
- 54P. J. Wang, Z. Q. Yu, Z. k. Fu, J. Miao, L. H. Huang, S. J. Chai, H. Zhai, J. Zhang, Phys. Rev. Lett. 2012, 109, 095301.
- 55Y. J. Lin, K. Jimenez-Garcia, I. B. Spielman, Nature 2011, 471, 83.
- 56Z. Wu, L. Zhang, W. Sun, X. T. Xu, B. Z. Wang, S. C. Ji, Y. Deng, S. Chen, X. J. Liu, J. W. Pan, Science 2016, 354, 83.
- 57C. Wang, P. Zhang, X. Chen, J. Yu, H. Zhai, Phys. Rev. Lett. 2017, 118, 185701.
- 58L. Zhang, L. Zhang, X. J. Liu, arXiv:1807, 10782 (2018).
- 59A. P. Schnyder, S. Ryu, A. Furusaki, A. W. W. Ludwig, Phys. Rev. B 2008, 78, 195125.
- 60S. Ryu, A. P. Schnyder, A. Furusaki, A. W. W. Ludwig, New J. Phys. 2010, 12, 065010.
- 61V. M. Martinez Alvarez, M. D. Coutinho-Filho, Phys. Rev. A 2019, 99, 013833.