Manipulating Nonclassicality via Quantum State Engineering Processes: Vacuum Filtration and Single Photon Addition
Priya Malpani
Indian Institute of Technology Jodhpur, Jodhpur, 342037 India
Search for more papers by this authorNasir Alam
Jaypee Institute of Information Technology, A-10, Sector-62, Noida, UP, 201309 India
Search for more papers by this authorKishore Thapliyal
Jaypee Institute of Information Technology, A-10, Sector-62, Noida, UP, 201309 India
RCPTM, Joint Laboratory of Optics of Palacky University and Institute of Physics of Academy of Science of the Czech Republic, Faculty of Science, Palacky University, 17. listopadu 12, 771 46, Olomouc, Czech Republic
Search for more papers by this authorCorresponding Author
Anirban Pathak
Jaypee Institute of Information Technology, A-10, Sector-62, Noida, UP, 201309 India
E-mail: [email protected]Search for more papers by this authorVenkatakrishnan Narayanan
Indian Institute of Technology Jodhpur, Jodhpur, 342037 India
Search for more papers by this authorSubhashish Banerjee
Indian Institute of Technology Jodhpur, Jodhpur, 342037 India
Search for more papers by this authorPriya Malpani
Indian Institute of Technology Jodhpur, Jodhpur, 342037 India
Search for more papers by this authorNasir Alam
Jaypee Institute of Information Technology, A-10, Sector-62, Noida, UP, 201309 India
Search for more papers by this authorKishore Thapliyal
Jaypee Institute of Information Technology, A-10, Sector-62, Noida, UP, 201309 India
RCPTM, Joint Laboratory of Optics of Palacky University and Institute of Physics of Academy of Science of the Czech Republic, Faculty of Science, Palacky University, 17. listopadu 12, 771 46, Olomouc, Czech Republic
Search for more papers by this authorCorresponding Author
Anirban Pathak
Jaypee Institute of Information Technology, A-10, Sector-62, Noida, UP, 201309 India
E-mail: [email protected]Search for more papers by this authorVenkatakrishnan Narayanan
Indian Institute of Technology Jodhpur, Jodhpur, 342037 India
Search for more papers by this authorSubhashish Banerjee
Indian Institute of Technology Jodhpur, Jodhpur, 342037 India
Search for more papers by this authorAbstract
The effect of two quantum state engineering processes that can be used to burn a hole at vacuum in the photon number distribution of quantum states of radiation field is compared using various witnesses of lower- and higher-order nonclassicality as well as a measure of nonclassicality. Specifically, the modification in nonclassical properties due to vacuum state filtration and a single photon addition on an even coherent state, binomial state, and Kerr state are investigated using the criteria of lower- and higher-order antibunching, squeezing, and sub-Poissonian photon statistics. Further, the amount of nonclassicality present in these engineered quantum states having enormous applications in continuous variable quantum communication is quantified and analyzed by using an linear entropy-based entanglement potential. It is observed that all the quantum states studied here are highly nonclassical, and the hole-burning processes can introduce/enhance nonclassical features. However, it is not true in general. A hole at vacuum implies a maximally nonclassical state (as far as Lee's nonclassical depth is concerned), but a particular process of hole burning at vacuum does not ensure the existence of any particular nonclassical feature. Specifically, lower- and higher-order squeezing are not observed for photon-added and vacuum filtered even coherent states.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1M. Dakna, L. Knöll, D. G. Welsch, Eur. Phys. J. D 1998, 3, 295.
- 2J. Sperling, W. Vogel, G. Agarwal, Phys. Rev. A 2014, 89, 043829.
- 3K. Vogel, V. Akulin, W. Schleich, Phys. Rev. Lett. 1993, 71, 1816.
- 4A. Miranowicz, W. Leoński, J. Opt. B: Quantum Semiclass. Opt. 2004, 6, S43.
10.1088/1464-4266/6/3/008 Google Scholar
- 5F. DellAnno, S. De Siena, F. Illuminati, Phys. Rep. 2006, 428, 53.
- 6A. Zavatta, S. Viciani, M. Bellini, Science 2004, 306, 660.
- 7J. P. Torres, Y. Deyanova, L. Torner, G. Molina-Terriza, Phys. Rev. A 2003, 67, 052313.
- 8A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, S. Haroche, Science 2000, 288, 2024.
- 9W. B. Gao, C. Y. Lu, X. C. Yao, P. Xu, O. Gühne, A. Goebel, Y. A. Chen, C. Z. Peng, Z. B. Chen, J. W. Pan, Nat. Phys. 2010, 6, 331.
- 10C. Y. Lu, X. Q. Zhou, O. Gühne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, J. W. Pan, Nat. Phys. 2007, 3, 91.
- 11C. H. Bennett, G. Brassard, Quantum cryptography: public key distribution and coin tossing, in: Int. Conf. Computer System Signal Process., IEEE, 1984 1984, pp. 175–179.
- 12G. Brassard, S. L. Braunstein, R. Cleve, Physica D: Nonlinear Phenomena 1998, 120, 43.
- 13Y. Chen, Int. J. Theor. Phys 2015, 54, 269.
- 14M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, R. Morandotti, Nature 2017, 546, 622.
- 15E. C. G. Sudarshan, Phys. Rev. Lett. 1963, 10, 277.
- 16R. J. Glauber, Phys. Rev. 1963, 131, 2766.
- 17J. Aasi, J. Abadie, B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, C. Affeldt, O. D. Aguiar, P. Ajith, B. Allen, E. Amador Ceron, D. Amariutei, S. B. Anderson, W. G. Anderson, K. Arai, M. C. Araya, C. Arceneaux, S. Ast, S. M. Aston, D. Atkinson, P. Aufmuth, C. Aulbert, L. Austin, B. E. Aylott, S. Babak, P. T. Baker, et al., Nat. Photonics 2013, 7, 613.
- 18A. Pathak, A. Verma, Indian J. Phys 2010, 84, 1005.
- 19A. Pathak, Elements of Quantum Computation and Quantum Communication, Taylor & Francis, London 2013.
- 20A. Pathak, A. Ghatak, J. Electromagnet Wave 2018, 32, 229.
- 21B. Baseia, M. H. Y. Moussa, V. S. Bagnato, Phys. Lett. A 1998, 240, 277.
- 22B. Escher, A. Avelar, T. da Rocha Filho, B. Baseia, Phys. Rev. A 2004, 70, 025801.
- 23C. C. Gerry, A. Benmoussa, Phys. Lett. A 2002, 303, 30.
- 24A. Miranowicz, J. Opt. B: Quantum Semiclass. Opt. 2005, 7, 142.
10.1088/1464-4266/7/5/004 Google Scholar
- 25A. Miranowicz, S. K. Özdemir, J. Bajer, M. Koashi, N. Imoto, J Opt. Soc. Am. B 2007, 24, 379.
- 26C. T. Lee, Phys. Rev. A 1995, 52, 3374.
- 27D. T. Pegg, L. S. Phillips, S. M. Barnett, Phys. Rev. Lett. 1998, 81, 1604.
- 28M. Koniorczyk, Z. Kurucz, A. Gábris, J. Janszky, Phys. Rev. A 2000, 62, 013802.
- 29S. K. Özdemir, A. Miranowicz, M. Koashi, N. Imoto, Phys. Rev. A 2001, 64, 063818.
- 30L. Hong, G. Guang-Can, Acta Phys. Sin. 1999, 8, 577.
- 31K. Thapliyal, N. L. Samantray, J. Banerji, A. Pathak, Phys. Lett. A 2017, 381, 3178.
- 32P. Malpani, N. Alam, K. Thapliyal, A. Pathak, V. Narayanan, S. Banerjee, Ann. Phys. (Berl.) 2019, 531, 1800318.
- 33P. Malpani, K. Thapliyal, N. Alam, A. Pathak, V. Narayanan, S. Banerjee, Ann. Phys. (Berl.) 2019, 531, 1900141.
- 34N. Meher, S. Sivakumar, Quantum Inf. Process. 2018, 17, 233.
- 35C. T. Lee, Phys. Rev. A 1991, 44, R2775.
- 36M. Hillery, Phys. Lett. A 1985, 111, 409.
- 37M. Brune, S. Haroche, J. Raimond, L. Davidovich, N. Zagury, Phys. Rev. A 1992, 45, 5193.
- 38A. Ourjoumtsev, H. Jeong, R. Tualle-Brouri, P. Grangier, Nature 2007, 448, 784.
- 39C. C. Gerry, J. Mod. Opt 1993, 40, 1053.
- 40D. Stoler, B. Saleh, M. Teich, Optica Acta: International Journal of Optics 1985, 32, 345.
- 41A. Verma, N. K. Sharma, A. Pathak, Phys. Lett. A 2008, 372, 5542.
- 42A. Verma, A. Pathak, Phys. Lett. A 2010, 374, 1009.
- 43M. R. Bazrafkan, V. I. Man'ko, J. Russ. Laser Res. 2004, 25, 453.
- 44C. C. Gerry, R. Grobe, Phys. Rev. A 1994, 49, 2033.
- 45G. S. Agarwal, K. Tara, Phys. Rev. A 1992, 46, 485.
- 46E. Shchukin, W. Vogel, Phys. Rev. Lett. 2005, 95, 230502.
- 47A. Miranowicz, M. Bartkowiak, X. Wang, Y. x. Liu, F. Nori, Phys. Rev. A 2010, 82, 013824.
- 48A. Miranowicz, M. Piani, P. Horodecki, R. Horodecki, Phys. Rev. A 2009, 80, 052303.
- 49R. H. Brown, R. Q. Twiss, Nature 1956, 177, 27.
- 50X. Zou, L. Mandel, Phys. Rev. A 1990, 41, 475.
- 51A. Allevi, S. Olivares, M. Bondani, Phys. Rev. A 2012, 85, 063835.
- 52M. Hamar, V. Michálek, A. Pathak, Meas. Sci. Rev. 2014, 14, 227.
- 53C. T. Lee, Phys. Rev. A 1990, 41, 1721.
- 54N. B. An, J. Opt. B: Quantum Semiclass. Opt. 2002, 4, 222.
10.1088/1464-4266/4/3/310 Google Scholar
- 55A. Pathak, M. E. Garcia, Appl. Phys. B 2006, 84, 479.
- 56P. Gupta, P. N. Pandey, A. Pathak, J. Phys. B: At. Mol. Opt. Phys. 2006, 39, 1137.
- 57C. K. Hong, L. Mandel, Phys. Rev. A 1985, 32, 974.
- 58C. K. Hong, L. Mandel, Phys. Rev. Lett. 1985, 54, 323.
- 59M. Hillery, Phys. Rev. A 1987, 36, 3796.
- 60H. Prakash, D. K. Mishra, J. Phys. B: At. Mol. Opt. Phys. 2006, 39, 2291.
- 61K. Thapliyal, S. Banerjee, A. Pathak, S. Omkar, V. Ravishankar, Ann. Phys. 2015, 362, 261.
- 62S. Banerjee, R. Ghosh, J. Phys. A: Math. Theor. 2007, 40, 13735.
- 63S. Banerjee, V. Ravishankar, R. Srikanth, Ann. Phys. 2010, 325, 816–834.
- 64S. Banerjee, V. Ravishankar, R. Srikanth , Eur. Phys. J. D 2010, 56, 277.
- 65J. Naikoo, K. Thapliyal, A. Pathak, S. Banerjee, Phys. Rev. A 2018, 97, 063840.
- 66S. Banerjee, J. Ghosh, R. Ghosh, Phys. Rev. A 2007, 75, 062106.
- 67J. K. Asbóth, J. Calsamiglia, H. Ritsch, Phys. Rev. Lett. 2005, 94, 173602.
- 68T. C. Wei, K. Nemoto, P. M. Goldbart, P. G. Kwiat, W. J. Munro, F. Verstraete, Phys. Rev. A 2003, 67, 022110.