Geometry of the Parameter Space of a Quantum System: Classical Point of View
Javier Alvarez-Jimenez
Departamento de Física de Altas Energías, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, Ciudad de México, 04510 México
Search for more papers by this authorDiego Gonzalez
Departamento de Física de Altas Energías, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, Ciudad de México, 04510 México
Search for more papers by this authorDaniel Gutiérrez-Ruiz
Departamento de Física de Altas Energías, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, Ciudad de México, 04510 México
Search for more papers by this authorCorresponding Author
Jose David Vergara
Departamento de Física de Altas Energías, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, Ciudad de México, 04510 México
E-mail: [email protected]Search for more papers by this authorJavier Alvarez-Jimenez
Departamento de Física de Altas Energías, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, Ciudad de México, 04510 México
Search for more papers by this authorDiego Gonzalez
Departamento de Física de Altas Energías, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, Ciudad de México, 04510 México
Search for more papers by this authorDaniel Gutiérrez-Ruiz
Departamento de Física de Altas Energías, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, Ciudad de México, 04510 México
Search for more papers by this authorCorresponding Author
Jose David Vergara
Departamento de Física de Altas Energías, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, Ciudad de México, 04510 México
E-mail: [email protected]Search for more papers by this authorAbstract
The local geometry of the parameter space of a quantum system is described by the quantum metric tensor and the Berry curvature, which are two fundamental objects that play a crucial role in understanding geometrical aspects of condensed matter physics. Classical integrable systems are considered and a new approach is reported to obtain the classical analogs of the quantum metric tensor and the Berry curvature. An advantage of this approach is that it can be applied to a wide variety of classical systems corresponding to quantum systems with bosonic and fermionic degrees of freedom. The approach used arises from the semiclassical approximation of the Berry curvature and the quantum metric tensor in the Lagrangian formalism. This semiclassical approximation is exploited to establish, for the first time, the relation between the quantum metric tensor and its classical counterpart. The approach described is illustrated and validated by applying it to five systems: the generalized harmonic oscillator, the symmetric and linearly coupled harmonic oscillators, the singular Euclidean oscillator, and a spin-half particle in a magnetic field. Finally, some potential applications of this approach and possible generalizations that can be of interest in the field of condensed matter physics are mentioned.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1M. V. Berry, Proc. R. Soc. A 1984, 392, 45.
- 2T. Jungwirth, Q. Niu, A. H. MacDonald, Phys. Rev. Lett. 2002, 88, 207208.
- 3F. D. M. Haldane, Phys. Rev. Lett. 2004, 93, 206602.
- 4D. Xiao, M. C. Chang, Q. Niu, Rev. Mod. Phys. 2010, 82, 1959.
- 5N. P. Armitage, E. J. Mele, A. Vishwanath, Rev. Mod. Phys. 2018, 90, 015001.
- 6H. Rostami, E. Cappelluti, A. V. Balatsky, Phys. Rev. B 2018, 98, 245114.
- 7J. P. Provost, G. Vallee, Commun. Math. Phys. 1980, 76, 289.
- 8S. J. Gu, Int. J. Mod. Phys. B 2010, 24, 4371.
- 9L. Campos Venuti, P. Zanardi, Phys. Rev. Lett. 2007, 99, 095701.
- 10P. Zanardi, P. Giorda, M. Cozzini, Phys. Rev. Lett. 2007, 99, 100603.
- 11P. Kumar, S. Mahapatra, P. Phukon, T. Sarkar, Phys. Rev. E 2012, 86, 051117.
- 12S. L. Zhu, Phys. Rev. Lett. 2006, 96, 077206.
- 13G. Palumbo, N. Goldman, Phys. Rev. Lett. 2018, 121, 170401.
- 14G. Palumbo, N. Goldman, Phys. Rev. B 2019, 99, 045154.
- 15M. Miyaji, T. Numasawa, N. Shiba, T. Takayanagi, K. Watanabe, Phys. Rev. Lett. 2015, 115, 261602.
- 16D. Bak, Phy. Lett. B 2016, 756, 200.
- 17A. Trivella, Classical Quantum Gravity 2017, 34, 105003.
- 18J. Alvarez-Jimenez, A. Dector, J. D. Vergara, J. High Energy Phys. 2017, 2017, 44.
- 19J. Alvarez-Jimenez, J. D. Vergara, Int. J. Quantum Inf. 2019, 17, 1950017.
- 20F. Weinhold, J. Chem. Phys. 1975, 63, 2479.
- 21G. Ruppeiner, Phys. Rev. A 1979, 20, 1608.
- 22H. Quevedo, J. Math. Phy. 2007, 48, 013506.
- 23J. H. Hannay, J. Phys. A: Math. Gen. 1985, 18, 221.
- 24M. V. Berry, J. Phys. A: Math. Gen. 1985, 18, 15.
- 25S. N. Biswas, S. K. Soni, T. R. Govdindarajan, J. Phys. A: Math. Gen. 1990, 23, L7.
10.1088/0305-4470/23/1/002 Google Scholar
- 26Y. Brihaye, S. Giller, P. Kosinski, P. Maslanka, Phys. Rev. D 1993, 47, 722.
- 27M. Maamache, J. P. Provost, G. Vallee, J. Phys. A: Math. Gen. 1990, 23, 5765.
10.1088/0305-4470/23/24/018 Google Scholar
- 28D. Gonzalez, D. Gutiérrez-Ruiz, J. D. Vergara, Phys. Rev. E 2019, 99, 032144.
- 29E. Gozzi, W. D. Thacker, Phys. Rev. D 1987, 35, 2388.
- 30E. Gozzi, D. Rohrlich, W. D. Thacker, Phys. Rev. D 1990, 42, 2752.
- 31L. Bombelli, R. K. Koul, J. Lee, R. D. Sorkin, Phys. Rev. D 1986, 34, 373.
- 32M. Srednicki, Phys. Rev. Lett. 1993, 71, 666.
- 33S. M. Chandran, S. Shankaranarayanan, Phys. Rev. D 2019, 99, 045010.
- 34S. Chapman, M. P. Heller, H. Marrochio, F. Pastawski, Phys. Rev. Lett. 2018, 120, 121602.
- 35R. A. Jefferson, R. C. Myers, J. High Energy Phys. 2017, 2017, 107.
- 36Y. S. Kim, M. E. Noz, J. Opt. B: Quantum Semiclassical Opt. 2005, 7, S458.
10.1088/1464-4266/7/12/005 Google Scholar
- 37J. P. Paz, A. J. Roncaglia, Phys. Rev. Lett. 2008, 100, 220401.
- 38D. N. Makarov, Phys. Rev. E 2018, 97, 042203.
- 39S. Bellucci, A. Nersessian, A. Saghatelian, V. Yeghikyan, J. Comput. Theor. Nanosci. 2011, 8, 769.
- 40V. Maslov, M. Fedoriuk, Semi-Classical Approximation in Quantum Mechanics, Mathematical Physics and Applied Mathematics, D. Reidel Publishing Company, Dordrecht, The Netherlands 1981.
- 41M. Brack, R. Bhaduri, Semiclassical Physics, Frontiers in Physics, Addison-Wesley, Reading, MA 1997.
- 42L. A. Pando Zayas, N. Quiroz, J. High Energy Phys. 2015, 2015, 110.
- 43P. Aniello, J. Clemente-Gallardo, G. Marmo, G. F. Volkert, Int. J. Geom. Methods Mod. Phys. 2010, 07, 485.
- 44G. Marmo, G. F. Volkert, Phys. Scr. 2010, 82, 038117.
- 45H. E. Camblong, L. N. Epele, H. Fanchiotti, C. A. García Canal, Phys. Rev. Lett. 2001, 87, 220402.
- 46J. Casahorrán, Physica A 1995, 217, 429.
- 47M. Maamache, J. Phys. A: Math. Gen. 1996, 29, 2833.
10.1088/0305-4470/29/11/017 Google Scholar
- 48M. Maamache, Ann. Phys. 1997, 254, 1.
- 49X. Tan, D. W. Zhang, Z. Yang, J. Chu, Y. Q. Zhu, D. Li, X. Yang, S. Song, Z. Han, Z. Li, Y. Dong, H. F. Yu, H. Yan, S. L. Zhu, Y. Yu, Phys. Rev. Lett. 2019, 122, 210401.
- 50M. Yu, P. Yang, M. Gong, Q. Cao, Q. Lu, H. Liu, M. B. Plenio, F. Jelezko, T. Ozawa, N. Goldman, S. Zhang, J. Cai, arXiv:1811.12840 [quant-ph], 2018.
- 51T. Ozawa, N. Goldman, Phys. Rev. B 2018, 97, 201117.
- 52A. Gianfrate, O. Bleu, L. Dominici, V. Ardizzone, M. De Giorgi, D. Ballarini, K. West, L. N. Pfeiffer, D. D. Solnyshkov, D. Sanvitto, G. Malpuech, arXiv:1901.03219 [cond-mat.mes-hall], 2019.
- 53D. Chruscinski, A. Jamiolkowski, Geometric Phases in Classical and Quantum Mechanics, Springer Science & Business Media, New York 2012.
- 54G. Barnich, M. Henneaux, Phys. Rev. Lett. 1994, 72, 1588.
- 55L. Henriet, Phys. Rev. B 2018, 97, 195138.
- 56I. Souza, T. Wilkens, R. M. Martin, Phys. Rev. B 2000, 62, 1666.
- 57Q. Niu, M. C. Chang, B. Wu, D. Xiao, R. Cheng, Physical Effects of Geometric Phases, World Scientific, Singapore 2017.
10.1142/10590 Google Scholar
- 58M. A. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge 1991.
10.1017/CBO9780511623998 Google Scholar
- 59Y. Q. Ma, S. Chen, H. Fan, W. M. Liu, Phys. Rev. B 2010, 81, 245129.
- 60J. M. Robbins, M. V. Berry, Proc. R. Soc. A 1992, 436, 631.