Aromatic compounds-mediated synthesis of anatase-free hierarchical TS-1 zeolite: Exploring design strategies via machine learning and enhanced catalytic performance
Chang'an Wang
Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule and Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, P. R. China
Search for more papers by this authorGuoqing An
Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule and Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, P. R. China
Search for more papers by this authorJing Lin
Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule and Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, P. R. China
Search for more papers by this authorCorresponding Author
Xiaowei Zhang
Institute of Advanced Materials, Beijing Normal University, Beijing, P. R. China
Correspondence
Xiaowei Zhang, Institute of Advanced Materials, Beijing Normal University, Beijing 100875, P. R. China.
Email: [email protected]
Hongyi Gao and Ge Wang, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
Email: [email protected] and [email protected]
Xingtian Shu, Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, P. R. China.
Email: [email protected]
Search for more papers by this authorZhiyuan Liu
Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule and Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, P. R. China
Search for more papers by this authorYibin Luo
Research Institute of Petroleum Processing, SINOPEC, Beijing, P. R. China
Search for more papers by this authorSiqi Liu
Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule and Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, P. R. China
Search for more papers by this authorZhixiang Cheng
Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule and Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, P. R. China
Search for more papers by this authorTingting Guo
Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule and Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, P. R. China
Search for more papers by this authorCorresponding Author
Hongyi Gao
Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule and Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, P. R. China
SINOPEC Changling Branch Company, Yueyang, P. R. China
Correspondence
Xiaowei Zhang, Institute of Advanced Materials, Beijing Normal University, Beijing 100875, P. R. China.
Email: [email protected]
Hongyi Gao and Ge Wang, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
Email: [email protected] and [email protected]
Xingtian Shu, Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, P. R. China.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Ge Wang
Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule and Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, P. R. China
Shunde Graduate School, University of Science and Technology Beijing, Shunde, P. R. China
Correspondence
Xiaowei Zhang, Institute of Advanced Materials, Beijing Normal University, Beijing 100875, P. R. China.
Email: [email protected]
Hongyi Gao and Ge Wang, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
Email: [email protected] and [email protected]
Xingtian Shu, Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, P. R. China.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Xingtian Shu
Research Institute of Petroleum Processing, SINOPEC, Beijing, P. R. China
Correspondence
Xiaowei Zhang, Institute of Advanced Materials, Beijing Normal University, Beijing 100875, P. R. China.
Email: [email protected]
Hongyi Gao and Ge Wang, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
Email: [email protected] and [email protected]
Xingtian Shu, Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, P. R. China.
Email: [email protected]
Search for more papers by this authorChang'an Wang
Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule and Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, P. R. China
Search for more papers by this authorGuoqing An
Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule and Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, P. R. China
Search for more papers by this authorJing Lin
Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule and Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, P. R. China
Search for more papers by this authorCorresponding Author
Xiaowei Zhang
Institute of Advanced Materials, Beijing Normal University, Beijing, P. R. China
Correspondence
Xiaowei Zhang, Institute of Advanced Materials, Beijing Normal University, Beijing 100875, P. R. China.
Email: [email protected]
Hongyi Gao and Ge Wang, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
Email: [email protected] and [email protected]
Xingtian Shu, Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, P. R. China.
Email: [email protected]
Search for more papers by this authorZhiyuan Liu
Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule and Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, P. R. China
Search for more papers by this authorYibin Luo
Research Institute of Petroleum Processing, SINOPEC, Beijing, P. R. China
Search for more papers by this authorSiqi Liu
Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule and Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, P. R. China
Search for more papers by this authorZhixiang Cheng
Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule and Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, P. R. China
Search for more papers by this authorTingting Guo
Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule and Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, P. R. China
Search for more papers by this authorCorresponding Author
Hongyi Gao
Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule and Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, P. R. China
SINOPEC Changling Branch Company, Yueyang, P. R. China
Correspondence
Xiaowei Zhang, Institute of Advanced Materials, Beijing Normal University, Beijing 100875, P. R. China.
Email: [email protected]
Hongyi Gao and Ge Wang, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
Email: [email protected] and [email protected]
Xingtian Shu, Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, P. R. China.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Ge Wang
Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule and Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, P. R. China
Shunde Graduate School, University of Science and Technology Beijing, Shunde, P. R. China
Correspondence
Xiaowei Zhang, Institute of Advanced Materials, Beijing Normal University, Beijing 100875, P. R. China.
Email: [email protected]
Hongyi Gao and Ge Wang, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
Email: [email protected] and [email protected]
Xingtian Shu, Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, P. R. China.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Xingtian Shu
Research Institute of Petroleum Processing, SINOPEC, Beijing, P. R. China
Correspondence
Xiaowei Zhang, Institute of Advanced Materials, Beijing Normal University, Beijing 100875, P. R. China.
Email: [email protected]
Hongyi Gao and Ge Wang, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
Email: [email protected] and [email protected]
Xingtian Shu, Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, P. R. China.
Email: [email protected]
Search for more papers by this authorChang'an Wang, Guoqing An and Jing Lin contributed equally to this work.
Abstract
Simultaneous achievement of constructing mesopores and eliminating anatase is a long-term pursuit for enhancing the catalytic performance of TS-1. Here, we developed an aromatic compounds-mediated synthesis method to prepare anatase-free and hierarchical TS-1 for olefin epoxidation. A series of hierarchical TS-1 zeolites were prepared by introducing aromatic compounds containing different functional groups via the crystallization process. The formation of intercrystalline mesopores and insertion of titanium into framework were facilitated at different extent. The synergistic coordination of carboxyl and hydroxyl in aromatic compounds with Ti(OH)4 realizes the uniform distribution of titanium species and eliminates the generation of anatase. Noteworthily, eight machine learning models were trained to reveal the mechanism of additive functional groups and preparation conditions on anatase formation and microstructure optimization. The prediction accuracy of most models can reach more than 80%. Benefiting from the larger mesopore volumes (0.37 cm3·g−1) and higher content of framework Ti species, TS-DHBDC-48h samples exhibit a higher catalytic performance than other zeolites, giving 1-hexene conversion of 49.3% and 1,2-epoxyhenane selectivity of 99.9%. The paper provides a facile aromatic compounds-mediated synthesis strategy and promotes the application of machine learning toward the design and optimization of new zeolites.
CONFLICT OF INTEREST
The authors declare no competing financial interest.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
agt2318-sup-0001-SuppMat.docx8.6 MB | Fig. S1 UV-Vis spectra of DHBDC-mediated zeolites with (a) different crystallization time, (b) different Ti/Si molar ratio (c) and different Ti sources. Fig. S2 FT-IR spectra of (a) DHBDC-mediated zeolites with different crystallization time and (b) the supernatant at the early crystallization stage of DHBDC-mediated zeolites. Fig. S3 (a) SEM and (b) TEM image of TS-WAC-1h. Fig. S4 SEM and TEM images of samples adding DHBDC with different crystallization time: (a and f) TS-DHBDC-1h, (b and g) TS-DHBDC-1.5h, (c and h) TS-DHBDC-2h, (d and i) TS-DHBDC-4h, (e and j) TS-DHBDC-4h. Fig. S5 (a) N2 adsorption-desorption isotherms and (b) pore size distribution curves of mesoporous TS-1 under different crystallization time. Fig. S6 TGA curves of TS-WAC-48h and TS-DHBDC-48h before calcination. Fig S7 (a) SEM and (b) TEM image of TS-DHBDC-0.5h. Fig. S8 UV-Vis spectra of TS-HQ-48h. Fig. S9 Parallel coordinate plot of 12 features. Fig. S10 ROC and AUC of 8 machine learning models. The dotted line represents the ROC of the pure random classifier. Fig. S11 Feature importance of 12 features in different machine learning models. Fig. S12 Reaction pathway of 1-hexene in TS-1/H2O2/CH3OH system Fig. S13 XRD patterns and relative crystallinity of TS-DHBDC-48h after recycling test. Fig. S14 UV-Vis spectra of TS-DHBDC-48h after recycling performance test. Fig. S15 FT-IR spectra of TS-DHBDC-48h after recycling performance test. Fig. S16 SEM image of TS-DHBDC-48h after recycling performance test. Fig. S17 Catalytic performance of TS-DHBDC-48h (TTIP) and TS-DHBDC-48h (TEOT). Fig. S18 Catalytic performance of all samples for the epoxidation of cyclohexene. Table S1 Lattice constant and cell volume of synthesized zeolites. Table S2 The hydrolysate pH of samples before and after adding different aromatic compounds. Table S3 Textural structure of DHBDC-mediated zeolites with different crystallization time. Table S4 Catalytic reaction conditions of reported and synthesized TS-1 samples. |
agt2318-sup-0002-SuppMat.xlsx15.2 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1T. Deng, G. Zhao, Y. Liu, Y. Lu, Chem. Eng. Process. 2018, 131, 215.
- 2M. Zhang, S. Ren, Q. Guo, B. Shen, Micropor. Mesopor. Mat. 2021, 326, 111395.
- 3V. Chauke, T. Nyokong, J. Mol. Catal. A-Chem. 2008, 289, 9.
- 4W. J. Xu, T. J. Zhang, R. S. Bai, P. Zhang, J. H. Yu, J. Mater. Chem. A 2020, 8, 9677.
- 5C. P. Gordon, H. Engler, A. S. Tragl, M. Plodinec, T. Lunkenbein, A. Berkessel, J. H. Teles, A. N. Parvulescu, C. Coperet, Nature 2020, 586, 708.
- 6A. Sole-Daura, T. Zhang, H. Fouilloux, C. Robert, C. M. Thomas, L. M. Chamoreau, J. J. Carbo, A. Proust, G. Guillemot, J. M. Poblet, ACS Catal. 2020, 10, 4737.
- 7C. N. Soekiman, K. Miyake, Y. Hayashi, Y. Zhu, M. Ota, H. Al-Jabri, R. Inoue, Y. Hirota, Y. Uchida, S. Tanaka, C. Y. Kong, N. Nishiyama, Mater. Today Chem. 2020, 16, 100209.
- 8M. Shakeri, A. S. Zarnagh, ACS Omega 2020, 5, 9334.
- 9M. Shakeri, S. B. Dehghanpour, Micropor. Mesopor. Mat. 2020, 298, 110066.
- 10X. Feng, N. Sheng, Y. B. Liu, X. B. Chen, D. Chen, C. H. Yang, X. G. Zhou, ACS Catal. 2017, 7, 2668.
- 11L. H. Chen, X. Y. Li, G. Tian, Y. Li, J. C. Rooke, G. S. Zhu, S. L. Qiu, X. Y. Yang, B. L. Su, Angew. Chem. Int. Ed. 2011, 50, 11156.
- 12Z. Liu, Q. Wang, X. Tan, S. Zheng, H. Zhang, Y. Wang, S. Gao, J. Alloys Compd. 2020, 815, 152478.
- 13Z. Liu, Y. Song, Q. Wang, Y. Jia, X. Tan, X. Du, S. Gao, J. Colloid Interface Sci. 2019, 556, 92.
- 14T. L. Lu, J. P. Zou, Y. Z. Zhan, X. M. Yang, Y. Q. Wen, X. Y. Wang, L. P. Zhou, J. Xu, ACS Catal. 2018, 8, 1287.
- 15S. R. Pour, A. Abdolmaleki, M. Dinari, J. Mater. Sci. 2019, 54, 2885.
- 16J. K. F. Buijink, J. J. M. van Vlaanderen, M. Crocker, F. G. M. Niele, Catal. Today 2004, 93–95, 199.
- 17J. Lv, L. Wang, R. Li, K. Zhang, D. Zhao, Y. Li, X. Li, X. Hang, G. Wang, ACS Catal. 2021, 11, 14338.
- 18Z. Zhang, Y. Tang, W. Du, J. Xu, Q. Wang, N. Song, G. Qian, X. Duan, X. Zhou, Appl. Catal. B-Environ. 2022, 319, 121837.
- 19Z. Chen, J. Wang, K. Shen, R. Wang, H. Liu, X. Huang, Z. Tang, Y. Yu, Y. Liu, Appl. Catal. A-Gen. 2020, 591, 117403.
- 20L. Chen, X. Zhang, Q. Han, L. Xu, S. Zhang, Y. Yuan, L. Xu, Appl. Catal. A-Gen. 2020, 598, 117588.
- 21Q. R. Zhu, H. W. Liu, C. L. Miao, G. Wang, Y. Li, Y. H. Yi, Z. C. Feng, H. C. Guo, Ind. Eng. Chem. Res. 2020, 59, 2828.
- 22H. Chen, R. Zhang, H. Wang, W. Bao, Y. Wei, Appl. Catal. B-Environ. 2020, 278, 119311.
- 23T. Ban, H. M. Vu, J. Zhang, J. Y. Yong, Q. Liu, X. Q. Li, J. Org. Chem. 2022, 87, 5543.
- 24T. J. Zhang, X. X. Chen, G. R. Chen, M. Y. Chen, R. S. Bai, M. J. Jia, J. H. Yu, J. Mater. Chem. A 2018, 6, 9473.
- 25X. L. Wang, C. K. Xiao, P. Zheng, Z. Zhao, M. H. Alabsi, Y. Shi, D. W. Gao, A. J. Duan, K. W. Huang, C. M. Xu, J. Catal. 2020, 384, 136.
- 26A.-L. Adedigba, G. Sankar, C. R. A. Catlow, Y. Du, S. Xi, A. Borgna, Micropor. Mesopor. Mat. 2017, 244, 83.
- 27V. Smeets, E. M. Gaigneaux, D. P. Debecker, Micropor. Mesopor. Mat. 2020, 293, 109801.
- 28X. Song, X. Yang, T. Zhang, H. Zhang, Q. Zhang, D. Hu, X. Chang, Y. Li, Z. Chen, M. Jia, P. Zhang, J. Yu, Inorg. Chem. 2020, 59, 13201.
- 29T. Zhang, X. Chen, G. Chen, M. Chen, R. Bai, M. Jia, J. Yu, J. Mater. Chem. A 2018, 6, 9473.
- 30S. Du, H.-M. Chen, H.-X. Shen, J. Chen, C.-P. Li, M. Du, ACS Appl. Nano Mater. 2020, 3, 9393.
- 31S. Du, Q. Sun, N. Wang, X. Chen, M. Jia, J. Yu, J. Mater. Chem. A 2017, 5, 7992.
- 32Q. Du, Y. Guo, H. Duan, H. Li, Y. Chen, H. Liu, Fuel 2017, 188, 232.
- 33Q. Zhang, A. Mayoral, O. Terasaki, Q. Zhang, B. Ma, C. Zhao, G. Yang, J. Yu, J. Am. Chem. Soc. 2019, 141, 3772.
- 34P. Raccuglia, K. C. Elbert, P. D. Adler, C. Falk, M. B. Wenny, A. Mollo, M. Zeller, S. A. Friedler, J. Schrier, A. J. Norquist, Nature 2016, 533, 73.
- 35Y. Xie, C. Zhang, X. Hu, C. Zhang, S. P. Kelley, J. L. Atwood, J. Lin, J. Am. Chem. Soc. 2020, 142, 1475.
- 36H. Liang, K. Jiang, T. A. Yan, G. H. Chen, ACS Omega 2021, 6, 9066.
- 37D. Ma, X. Li, J. Liang, Z. Wang, W. Yang, Micropor. Mesopor. Mat. 2022, 339, 112029.
- 38J. D. Evans, F.-X. Coudert, Chem. Mat. 2017, 29, 7833.
- 39A. Gandhi, M. M. F. Hasan, Curr. Opin. Chem. Eng. 2022, 35, 100739.
- 40R. Gaillac, S. Chibani, F.-X. Coudert, Chem. Mat. 2020, 32, 2653.
- 41J. C. Xing, D. H. Yuan, H. B. Liu, Y. S. Tong, Y. P. Xu, Z. M. Liu, J. Mater. Chem. A 2021, 9, 6205.
- 42J. N. Zhang, H. Z. Shi, Y. Song, W. J. Xu, X. Y. Meng, J. Y. Li, Inorg. Chem. Front. 2021, 8, 3077.
- 43X. Gao, J. G. An, J. L. Gu, L. Li, Y. S. Li, Micropor. Mesopor. Mat. 2017, 239, 381.
- 44H. Yin, F. Su, C. Luo, L. Zhu, W. Zhong, L. Mao, K. You, D. Yin, Appl. Catal. B-Environ. 2022, 302, 120851.
- 45A. C. Alba-Rubio, J. L. G. Fierro, L. Leon-Reina, R. Mariscal, J. A. Dumesic, M. L. Granados, Appl. Catal. B-Environ. 2017, 202, 269.
- 46R. Fernández, D. Cardoso, Catal. Today 2005, 107–108, 844.
- 47Q. Guo, K. Sun, Z. Feng, G. Li, M. Guo, F. Fan, C. Li, Chem.-Eur. J. 2012, 18, 13854.
- 48Z. Di, H. Chen, R. Zhang, H. Wang, J. Jia, Y. Wei, Appl. Catal. B-Environ. 2022, 304, 120843.
- 49J. H. Lyu, L. Niu, F. L. Shen, J. Wei, Y. Z. Xiang, Z. J. Yu, G. F. Zhang, C. R. Ding, Y. N. Huang, X. N. Li, ACS Omega 2020, 5, 16865.
- 50S. Sharma, V. Singh, R. K. Dwivedi, AIP Conf. Proc. 2014, 1591, 680.
- 51G. An, C. Wang, H. Gao, G. Wang, Y. Luo, Z. Liu, C. Xia, S. Liu, X. Peng, Z. Cheng, X. Shu, J. Colloid Interface Sci. 2022, 633, 291.
- 52Z. S. Li, X. Y. Chen, W. H. Ma, Q. Zhong, Acs Sustain. Chem. Eng. 2020, 8, 8496.
- 53J. Wang, Z. Chen, Y. Yu, Z. Tang, K. Shen, R. Wang, H. Liu, X. Huang, Y. Liu, RSC Adv. 2019, 9, 37801.
- 54Y. Zhao, D. Zhou, T. Zhang, Y. Yang, K. Zhan, X. Liu, H. Min, X. Lu, R. Nie, Q. Xia, ACS Appl. Mater. Interfaces 2018, 10, 6390.
- 55L. Wang, J. Sun, X. J. Meng, W. P. Zhang, J. Zhang, S. X. Pan, Z. Shen, F. S. Xiao, Chem. Commun. 2014, 50, 2012.
- 56B. R. Wang, M. Lin, X. X. Peng, B. Zhu, X. T. Shu, RSC Adv. 2016, 6, 44963.
- 57A. S. Kazachenko, F. Akman, H. Abdelmoulahi, N. Issaoui, Y. N. Malyar, O. Al-Dossary, M. J. Wojcik, J. Mol. Liq. 2021, 342, 117475.
- 58M. Jehannin, A. Rao, H. Colfen, J. Am. Chem. Soc. 2019, 141, 10120.
- 59H. Li, S. C. Hayden, A. France-Lanord, E. Converse, B. S. Hanna, T. Headrick, K. Drake, J. C. Grossman, Nano Lett. 2019, 19, 8388.
- 60J. Shin, N. H. Ahn, M. A. Camblor, S. J. Cho, S. B. Hong, Angew. Chem. Int. Ed. 2014, 53, 8949.
- 61M. Rueda, F. J. Luque, M. Orozco, Biopolymers 2001, 61, 52.
- 62F. Daeyaert, F. Ye, M. W. Deem, Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 3413.
- 63B. Conroy, R. Nayak, A. L. R. Hidalgo, G. J. Millar, Micropor. Mesopor. Mat. 2022, 335, 111802.
- 64J. Zhang, H. Shi, Y. Song, W. Xu, X. Meng, J. Li, Inorg. Chem. Front. 2021, 8, 3077.
- 65X. Chang, X. Yang, X. Song, L. Xu, D. Hu, Y. Sun, M. Jia, J. Porous Mat. 2022, 29, 641.
- 66H. Tang, Q. Xu, M. Wang, J. Jiang, ACS Appl. Mater. Interfaces 2021, 13, 53454.
- 67Z. Shi, H. Liang, W. Yang, J. Liu, Z. Liu, Z. Qiao, Chem. Eng. Sci. 2020, 214, 115430.
- 68X. Wang, C. Xiao, P. Zheng, Z. Zhao, M. H. Alabsi, Y. Shi, D. Gao, A. Duan, K.-W. Huang, C. Xu, J. Catal. 2020, 384, 136.
- 69H. Li, C. Qiu, S. Ren, Q. Dong, S. Zhang, F. Zhou, X. Liang, J. Wang, S. Li, M. Yu, Science 2020, 367, 667.