AI-Aided High-Throughput Screening and Optimistic Design of MOF Materials for Adsorptive Gas Separation
Li Zhou
Sichuan University, School of Chemical Engineering, No.24 South Section 1, Yihuan Road, Chengdu, Sichuan Province, 610065 China
Search for more papers by this authorMin Cheng
Sichuan University, School of Chemical Engineering, No.24 South Section 1, Yihuan Road, Chengdu, Sichuan Province, 610065 China
Search for more papers by this authorShihui Wang
Sichuan University, School of Chemical Engineering, No.24 South Section 1, Yihuan Road, Chengdu, Sichuan Province, 610065 China
Search for more papers by this authorXu Ji
Sichuan University, School of Chemical Engineering, No.24 South Section 1, Yihuan Road, Chengdu, Sichuan Province, 610065 China
Search for more papers by this authorLi Zhou
Sichuan University, School of Chemical Engineering, No.24 South Section 1, Yihuan Road, Chengdu, Sichuan Province, 610065 China
Search for more papers by this authorMin Cheng
Sichuan University, School of Chemical Engineering, No.24 South Section 1, Yihuan Road, Chengdu, Sichuan Province, 610065 China
Search for more papers by this authorShihui Wang
Sichuan University, School of Chemical Engineering, No.24 South Section 1, Yihuan Road, Chengdu, Sichuan Province, 610065 China
Search for more papers by this authorXu Ji
Sichuan University, School of Chemical Engineering, No.24 South Section 1, Yihuan Road, Chengdu, Sichuan Province, 610065 China
Search for more papers by this authorJingzheng Ren
Search for more papers by this authorSummary
In industry, the separation/purification of gas mixtures is of significant importance. Adsorption separation is an effective route for this application regarding energy cost and separation efficiency, for which the selection of adsorbents is the key. This chapter introduces a computer-aided high-throughput screening strategy for the selection of metal–organic frameworks (MOFs) for gas separation, striving to accelerate the practice of discovering better adsorbents for particular applications. The practice usually consists of several steps. Firstly, prescreen of predetermined potential MOF candidates based on intuitive structure and chemical analysis. Secondly, molecular simulation-assisted structure–property relationship analysis is conducted based on small sampled MOFs, from which structure criteria can be derived for high-performing MOFs. Thirdly, a screening procedure is carried out to select the desired MOFs according to the derived criteria. Fourthly, rigorous molecular simulation is applied to assess the separation performance metrics of the selectied MOFs. By analyzing the simulated performance indicators, top-performing MOFs can be identified. Last but not least, the impact of practical factors, such as humidity, operation temperature, and inlet gas composition, on the performance of the selected adsorbents in practice is explored.
References
- Xue , X. , Cheng , M. , Wang , S. et al. ( 2023 ). High-throughput screening of metal-organic frameworks assisted by machine learning: propane/propylene separation . Industrial & Engineering Chemistry Research 62 ( 2 ): 1073 – 1084 .
- Cheng , M. , Feng , M. , Zhou , L. et al. A machine learning boosted high-throughput screening of metal-organic frameworks for ethane/ethylene separation: from molecular simulation to process modeling . Applied Energy Submitted to Journal.
-
He , S.
,
Cheng , M.
,
Liu , C.
et al.
High-throughput virtual screening of bio-metal-organic frameworks for O
2
/N
2
separation
.
Industrial & Engineering Chemistry Research
63
:
2347
–
2360
.
10.1021/acs.iecr.3c04185 Google Scholar
- Wang , Y. , Peh , S.B. , and Zhao , D. ( 2019 ). Alternatives to cryogenic distillation: advanced porous materials in adsorptive light olefin/paraffin separations . Small 15 : 190005825 .
- Mao , D. , Griffin , J.M. , Dawson , R. et al. ( 2021 ). Metal organic frameworks for hydrogen purification . International Journal of Hydrogen Energy 46 ( 45 ): 23380 – 23405 .
-
Li , H.
,
Li , L.
,
Lin , R.
et al. (
2019
).
Porous metal-organic frameworks for gas storage and separation: status and challenges
.
EnergyChem
1
:
1000061
.
10.1016/j.enchem.2019.100006 Google Scholar
- Daglar , H. and Keskin , S. ( 2020 ). Recent advances, opportunities, and challenges in high-throughput computational screening of MOFs for gas separations . Coordination Chemistry Reviews 422 : 213470 .
- Clayson , I.G. , Hewitt , D. , Hutereau , M. et al. ( 2020 ). High throughput methods in the synthesis, characterization, and optimization of porous materials . Advanced Materials 32 : 200278044SI .
-
Qiao , Z.
,
Li , L.
,
Li , S.
et al. (
2021
).
Molecular fingerprint and machine learning to accelerate design of high-performance homochiral metal-organic frameworks
.
AIChE Journal
67
:
e1735210
.
10.1002/aic.17352 Google Scholar
- Li , J. , Sculley , J. , and Zhou , H. ( 2012 ). Metal-organic frameworks for separations . Chemical Reviews 112 ( 2SI ): 869 – 932 .
- Kwon , H.T. and Jeong , H. ( 2013 ). In situ synthesis of thin zeolitic-imidazolate framework ZIF-8 membranes exhibiting exceptionally high propylene/propane separation . Journal of the American Chemical Society 135 ( 29 ): 10763 – 10768 .
- Barea , E. , Montoro , C. , and Navarro , J.A.R. ( 2014 ). Toxic gas removal – metal-organic frameworks for the capture and degradation of toxic gases and vapours . Chemical Society Reviews 43 ( 16 ): 5419 – 5430 .
- Moghadam , P.Z. , Li , A. , Wiggin , S.B. et al. ( 2017 ). Development of a Cambridge Structural Database Subset: a collection of metal-organic frameworks for past, present, and future . Chemistry of Materials 29 ( 7 ): 2618 – 2625 .
- Wilmer , C.E. , Leaf , M. , Lee , C.Y. et al. ( 2012 ). Large-scale screening of hypothetical metal-organic frameworks . Nature Chemistry 4 ( 2 ): 83 – 89 .
- Chung , Y.G. , Camp , J. , Haranczyk , M. et al. ( 2014 ). Computation-ready, experimental metal-organic frameworks: a tool to enable high-throughput screening of nanoporous crystals . Chemistry of Materials 26 ( 21 ): 6185 – 6192 .
- Chung , Y.G. , Haldoupis , E. , Bucior , B.J. et al. ( 2019 ). Advances, updates, and analytics for the computation-ready, experimental metal-organic framework database: CoRE MOF 2019 . Journal of Chemical & Engineering Data 64 ( 12 ): 5985 – 5998 .
-
Cheng , M.
,
Wang , S.
,
Zhang , Z.
et al. (
2023
).
High-throughput virtual screening of metal-organic frameworks for xenon recovery from exhaled anesthetic gas mixture
.
Chemical Engineering Journal
451
:
1382181
.
10.1016/j.cej.2022.138218 Google Scholar
- Halder , P. and Singh , J.K. ( 2020 ). High-throughput screening of metal-organic frameworks for ethane-ethylene separation using the machine learning technique . Energy & Fuels 34 ( 11 ): 14591 – 14597 .
- Yan , Y. , Shi , Z. , Li , H. et al. ( 2022 ). Machine learning and in - silico screening of metal-organic frameworks for O 2 /N 2 dynamic adsorption and separation . Chemical Engineering Journal 427 : 131604 .
- Wang , S. , Cheng , M. , Luo , L. et al. ( 2023 ). High-throughput screening of metal-organic frameworks for hydrogen purification . Chemical Engineering Journal 451 : 1384362 .
- Dubbeldam , D. , Calero , S. , Ellis , D.E. et al. ( 2016 ). RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials . Molecular Simulation 42 ( 2 ): 81 – 101 .
- Willems , T.F. , Rycroft , C. , Kazi , M. et al. ( 2012 ). Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials . Microporous and Mesoporous Materials 149 ( 1 ): 134 – 141 .
- van der Maaten , L. and Hinton , G. ( 2008 ). Visualizing data using t-SNE . Journal of Machine Learning Research 9 : 2579 – 2605 .
-
Tang , H.
and
Jiang , J.
(
2021
).
In silico screening and design strategies of ethane-selective metal-organic frameworks for ethane/ethylene separation
.
AIChE Journal
67
:
e170253
.
10.1002/aic.17025 Google Scholar
-
Zhai , Q.
,
Bu , X.
,
Mao , C.
et al. (
2016
).
An ultra-tunable platform
for molecular engineering of high-performance crystalline porous materials
.
Nature Communications
7
:
13645
.
10.1038/ncomms13645 Google Scholar
- Belmabkhout , Y. , Pillai , R.S. , Alezi , D. et al. ( 2017 ). Metal-organic frameworks to satisfy gas upgrading demands: fine-tuning the soc-MOF platform for the operative removal of H 2 S . Journal of Materials Chemistry A 5 ( 7 ): 3293 – 3303 .
- Xue , Z. , Sheng , T. , Zhu , Q. et al. ( 2013 ). Two cationic metal-organic frameworks featuring different cage-to-cage connections: syntheses, crystal structures, photoluminescence and gas sorption properties . CrystEngComm 15 ( 40 ): 8139 – 8145 .
- Liang , L. , Zhang , J. , Ren , S. et al. ( 2010 ). Rational synthesis of a microporous metal-organic framework with PtS topology using a semi-rigid tetrahedral linker . CrystEngComm 12 ( 7 ): 2008 – 2010 .
- Murdock , C.R. , Lu , Z. , and Jenkins , D.M. ( 2013 ). Effects of solvation on the framework of a breathing copper MOF employing a semirigid linker . Inorganic Chemistry 52 ( 4 ): 2182 – 2187 .
-
Chen , M.
,
Liu , D.
,
Deng , Y.
et al. (
2015
).
A 3D pillared Cu-based metal-organic framework: synthesis, structure, adsorption and catalytic properties
.
Inorganic Chemistry Communications
55
:
96
–
98
.
10.1016/j.inoche.2015.03.028 Google Scholar
- Zeng , M. , Tan , Y. , He , Y. et al. ( 2013 ). A porous 4-fold-interpenetrated chiral framework exhibiting vapochromism, single-crystal-to-single-crystal solvent exchange, gas sorption, and a poisoning effect . Inorganic Chemistry 52 ( 5 ): 2353 – 2360 .
- Chen , D. , Ma , J. , and Cheng , P. ( 2015 ). Solvent-induced secondary building unit (SBU) variations in a series of Cu(II) metal-organic frameworks derived from a bifunctional ligand . Dalton Transactions 44 ( 19 ): 8926 – 8931 .
- Altintas , C. , Avci , G. , Daglar , H. et al. ( 2018 ). Database for CO 2 separation performances of MOFs based on computational materials screening . ACS Applied Materials & Interfaces 10 ( 20 ): 17257 – 17268 .
-
He , X.
,
Chen , D.
, and
Wang , W.
(
2020
).
Bimetallic metal-organic frameworks (MOFs) synthesized using the spray method for tunable CO
2
adsorption
.
Chemical Engineering Journal
382
:
122825
.
10.1016/j.cej.2019.122825 Google Scholar
- Burtch , N.C. , Jasuja , H. , and Walton , K.S. ( 2014 ). Water stability and adsorption in metal-organic frameworks . Chemical Reviews 114 ( 20 ): 10575 – 10612 .
- Yu , J. , Xie , L. , Li , J. et al. ( 2017 ). CO 2 capture and separations using MOFs: computational and experimental studies . Chemical Reviews 117 ( 14SI ): 9674 – 9754 .