AI for Property Modeling, Solvent Tailoring, and Process Design
Yuqiu Chen
University of Delaware, Department of Chemical and Biomolecular Engineering, 150 Academy Street, Newark, DE, 19716 USA
Search for more papers by this authorYuqiu Chen
University of Delaware, Department of Chemical and Biomolecular Engineering, 150 Academy Street, Newark, DE, 19716 USA
Search for more papers by this authorJingzheng Ren
Search for more papers by this authorSummary
Artificial intelligence (AI) has emerged as a powerful and efficient approach in numerous scientific and engineering fields. In this chapter, we delve into the significant contributions of AI, with a specific focus on property modeling, solvent tailoring, and process design. However, as AI continues to advance, it is essential to address the future challenges that lie ahead. These challenges underscore the need for developing practical solutions and strategies in AI such as multidisciplinary approaches, data preprocessing, model validation, transparency, continuous monitoring, and fostering collaboration between domain experts and data scientists.
References
-
Khaleel , M.
,
Ahmed , A.A.
, and
Alsharif , A.
(
2023
).
Artificial intelligence in engineering
.
Brilliance: Research of Artificial Intelligence
3
(
1
):
32
–
42
.
10.47709/brilliance.v3i1.2170 Google Scholar
- Guo , K. , Yang , Z. , Yu , C.-H. , and Buehler , M.J. ( 2021 ). Artificial intelligence and machine learning in design of mechanical materials . Materials Horizons 8 ( 4 ): 1153 – 1172 .
- Khanzode , K.C.A. and Sarode , R.D. ( 2020 ). Advantages and disadvantages of artificial intelligence and machine learning: a literature review . International Journal of Library & Information Science (IJLIS) 9 ( 1 ): 3 .
-
DeCost , B.L.
,
Hattrick-Simpers , J.R.
,
Trautt , Z.
et al. (
2020
).
Scientific AI in materials science: a path to a sustainable and scalable paradigm
.
Machine Learning: Science and Technology
1
(
3
):
033001
.
10.1088/2632-2153/ab9a20 Google Scholar
- Baum , Z.J. , Yu , X. , Ayala , P.Y. et al. ( 2021 ). Artificial intelligence in chemistry: current trends and future directions . Journal of Chemical Information and Modeling 61 ( 7 ): 3197 – 3212 .
- Lei , Z. , Chen , B. , Koo , Y.-M. , and MacFarlane , D.R. ( 2017 ). Introduction: ionic liquids . Chemical Reviews 117 : 6633 – 6635 .
- Liu , K. , Wang , Z. , Shi , L. et al. ( 2021 ). Ionic liquids for high performance lithium metal batteries . Journal of Energy Chemistry 59 : 320 – 333 .
- Kerche , E.F. , Demétrio da Silva , V. , da Cruz , J.A. et al. ( 2023 ). Aramid pulp modified with imidazolium ionic liquids as a potential replacement for carbon black in fluorinated rubber composites . Polymer Composites 44 ( 5 ): 2887 – 2897 .
-
Silva , A.B.
,
Jesus , A.R.
,
Agostinho , D.A.
et al. (
2023
).
Using dicationic ionic liquids to upgrade the cytotoxicity and solubility of poorly water-soluble drugs
.
Journal of Ionic Liquids
3
(
1
):
100052
.
10.1016/j.jil.2023.100052 Google Scholar
- Greaves , T.L. and Drummond , C.J. ( 2008 ). Protic ionic liquids: properties and applications . Chemical Reviews 108 ( 1 ): 206 – 237 .
-
Rooney , D.
,
Jacquemin , J.
, and
Gardas , R.
(
2010
).
Thermophysical properties of ionic liquids
.
Ionic Liquids
290
:
185
–
212
.
10.1007/128_2008_32 Google Scholar
- Dai , Z. , Chen , Y. , Liu , C. et al. ( 2021 ). Prediction and verification of heat capacities for pure ionic liquids . Chinese Journal of Chemical Engineering 31 : 169 – 176 .
- Iqbal , M. , Tao , Y. , Xie , S. et al. ( 2016 ). Aqueous two-phase system (ATPS): an overview and advances in its applications . Biological Procedures Online 18 ( 1 ): 1 – 18 .
- Hatti-Kaul , R. ( 2001 ). Aqueous two-phase systems: a general overview . Molecular Biotechnology 19 : 269 – 277 .
- Magalhães , F.F. , Tavares , A.P. , and Freire , M.G. ( 2021 ). Advances in aqueous biphasic systems for biotechnology applications . Current Opinion in Green and Sustainable Chemistry 27 : 100417 .
- Goja , A.M. , Yang , H. , Cui , M. , and Li , C. ( 2013 ). Aqueous two-phase extraction advances for bioseparation . Journal of Bioprocessing & Biotechniques 4 ( 1 ): 1 – 8 .
-
Rito-Palomares , M.
and
Benavides , J.
(
2017
).
Aqueous Two-phase Systems for Bioprocess Development for the Recovery of Biological Products
.
Springer
.
10.1007/978-3-319-59309-8 Google Scholar
- Anghel , C.I. and Cristea , M.V. ( 2010 ). Prediction of thermodynamic properties by artificial intelligence techniques . Revista de Chimie 61 : 87 – 93 .
- Liu , X. , Gao , J. , Chen , Y. et al. ( 2023 ). Machine learning-assisted modeling study on the density and heat capacity of ionic liquid-organic solvent binary systems . Journal of Molecular Liquids 390 : 122972 .
- Baskin , I. , Epshtein , A. , and Ein-Eli , Y. ( 2022 ). Benchmarking machine learning methods for modeling physical properties of ionic liquids . Journal of Molecular Liquids 351 : 118616 .
- Yusuf , F. , Olayiwola , T. , and Afagwu , C. ( 2021 ). Application of artificial intelligence-based predictive methods in Ionic liquid studies: a review . Fluid Phase Equilibria 531 : 112898 .
- Koutsoukos , S. , Philippi , F. , Malaret , F. , and Welton , T. ( 2021 ). A review on machine learning algorithms for the ionic liquid chemical space . Chemical Science 12 ( 20 ): 6820 – 6843 .
- Dhakal , P. and Shah , J.K. ( 2021 ). Developing machine learning models for ionic conductivity of imidazolium-based ionic liquids . Fluid Phase Equilibria 549 : 113208 .
- Datta , R. , Ramprasad , R. , and Venkatram , S. ( 2022 ). Conductivity prediction model for ionic liquids using machine learning . The Journal of Chemical Physics 156 ( 21 ): 214505 .
- Dhakal , P. and Shah , J.K. ( 2022 ). A generalized machine learning model for predicting ionic conductivity of ionic liquids . Molecular Systems Design and Engineering 7 ( 10 ): 1344 – 1353 .
-
Karakasidis , T.E.
,
Sofos , F.
, and
Tsonos , C.
(
2022
).
The electrical conductivity of ionic liquids: numerical and analytical machine learning approaches
.
Fluids
7
(
10
):
321
.
10.3390/fluids7100321 Google Scholar
- Yalcin , D. , Le , T.C. , Drummond , C.J. , and Greaves , T.L. ( 2019 ). Machine learning approaches for further developing the understanding of the property trends observed in protic ionic liquid containing solvents . The Journal of Physical Chemistry B 123 ( 18 ): 4085 – 4097 .
- Chen , Y. , Peng , B. , Kontogeorgis , G.M. , and Liang , X. ( 2022 ). Machine learning for the prediction of viscosity of ionic liquid-water mixtures . Journal of Molecular Liquids 350 : 118546 .
-
Chen Y
,
Ma S
,
Lei Y
, et al.
Ionic liquid binary mixtures: machine learning-assisted modeling, solvent tailoring, process design and optimization
.
AIChE Journal
2024
;
e18392
. doi:
https://doi.org/10.1002/aic.18392
.
10.1002/aic.18392 Google Scholar
- Fu , Y. , Chen , Y. , Zhang , C. et al. ( 2022 ). Prediction surface tension of ionic liquid–water mixtures using a hybrid group contribution and artificial neural network method . Fluid Phase Equilibria 563 : 113571 .
- Lei , Y. , Shu , Y. , Liu , X. et al. ( 2023 ). Predictive modeling on the surface tension and viscosity of ionic liquid-organic solvent mixtures via machine learning . Journal of the Taiwan Institute of Chemical Engineers 151 : 105140 .
- Pirdashti , M. , Taheri , M. , Dragoi , E.-N. , and Curteanu , S. ( 2020 ). Machine learning approaches for prediction of phase equilibria in poly(ethylene glycol) + sodium phosphate aqueous two-phase systems . Iranian Journal of Chemistry and Chemical Engineering 39 ( 6 ): 185 – 197 .
- Chen , Y. , Liang , X. , Woodley , J.M. , and Kontogeorgis , G.M. ( 2022 ). Modelling study on phase equilibria behavior of ionic liquid-based aqueous biphasic systems . Chemical Engineering Science 247 : 116904 .
- Chen , Y. , Meng , X. , Cai , Y. et al. ( 2021 ). Optimal aqueous biphasic systems design for the recovery of ionic liquids . Industrial and Engineering Chemistry Research 60 ( 43 ): 15730 – 15740 .
- Pazuki , G. , Taghikhani , V. , and Vossoughi , M. ( 2010 ). Prediction of the partition coefficients of biomolecules in polymer–polymer aqueous two-phase systems using the artificial neural network model . Particulate Science and Technology 28 ( 1 ): 67 – 73 .
- Chen , Y. , Liang , X. , and Kontogeorgis , G.M. ( 2023 ). Artificial neural network modeling on the polymer-electrolyte aqueous two-phase systems involving biomolecules . Separation and Purification Technology 306 : 122624 .
-
Byrne , F.P.
,
Jin , S.
,
Paggiola , G.
et al. (
2016
).
Tools and techniques for solvent selection: green solvent selection guides
.
Sustainable Chemical Processes
4
:
1
–
24
.
10.1186/s40508-016-0051-z Google Scholar
- Chen , Y. ( 2020 ). Computer-aided design methodology for separation processes with ionic liquids . Ph.D. thesis. Technical University of Denmark.
- Clarke , C.J. , Tu , W.-C. , Levers , O. et al. ( 2018 ). Green and sustainable solvents in chemical processes . Chemical Reviews 118 ( 2 ): 747 – 800 .
- Chen , Y. , Koumaditi , E. , Gani , R. et al. ( 2019 ). Computer-aided design of ionic liquids for hybrid process schemes . Computers and Chemical Engineering 130 : 106556 .
- Alshehri , A.S. , Gani , R. , and You , F. ( 2020 ). Deep learning and knowledge-based methods for computer-aided molecular design—toward a unified approach: state-of-the-art and future directions . Computers and Chemical Engineering 141 : 107005 .
- Gani , R. , Zhang , L. , Kalakul , S. , and Cignitti , S. ( 2016 ). Computer-aided molecular design and property prediction . In: Computer Aided Chemical Engineering , vol. 39 (ed. M. Martín , M.R. Eden , and N.G. Chemmangattuvalappil ), 153 – 196 . Elsevier .
- Wen , H. , Nan , S. , Wu , D. et al. ( 2023 ). A systematic review on intensifications of artificial intelligence assisted green solvent development . Industrial and Engineering Chemistry Research 62 ( 48 ): 20473 – 20491 .
- Tripathi , N. , Goshisht , M.K. , Sahu , S.K. , and Arora , C. ( 2021 ). Applications of artificial intelligence to drug design and discovery in the big data era: a comprehensive review . Molecular Diversity 25 ( 3 ): 1643 – 1664 .
- Liu , Q. , Zhang , L. , Tang , K. et al. ( 2021 ). Machine learning-based atom contribution method for the prediction of surface charge density profiles and solvent design . AIChE Journal 67 ( 2 ): e17110 .
- Wang , Z. , Zhou , T. , and Sundmacher , K. ( 2022 ). A novel machine learning-based optimization approach for the molecular design of solvents . Computer Aided Chemical Engineering 51 : 1477 – 1482 .
- Sui , Y. , Zhai , C. , Wu , W. , and Leung , M.K. ( 2022 ). Multi-scale computer-aided molecular design of ionic liquid for absorption heat transformer based on machine learning . Energy Conversion and Management 261 : 115617 .
- Wang , K. , Xu , H. , Yang , C. , and Qiu , T. ( 2021 ). Machine learning-based ionic liquids design and process simulation for CO 2 separation from flue gas . Green Energy & Environment 6 ( 3 ): 432 – 443 .
- Zhang , K. , Wu , J. , Yoo , H. , and Lee , Y. ( 2021 ). Machine learning-based approach for tailor-made design of ionic liquids: application to CO 2 capture . Separation and Purification Technology 275 : 119117 .
- Zhang , X. , Wang , J. , Song , Z. , and Zhou , T. ( 2021 ). Data-driven ionic liquid design for CO 2 capture: molecular structure optimization and DFT verification . Industrial and Engineering Chemistry Research 60 ( 27 ): 9992 – 10000 .
- Liu , X. , Chu , J. , Huang , S. et al. ( 2023 ). Machine learning-based design of ionic liquids at the atomic scale for highly efficient CO 2 capture . ACS Sustainable Chemistry & Engineering 11 ( 24 ): 8978 – 8987 .
- Kuroki , N. , Suzuki , Y. , Kodama , D. et al. ( 2023 ). Machine learning-boosted design of ionic liquids for CO 2 absorption and experimental verification . The Journal of Physical Chemistry B 127 ( 9 ): 2022 – 2027 .
- Chen , Y. , Liang , X. , and Kontogeorgis , G.M. ( 2023 ). Optimal design of aqueous two-phase systems for biomolecule partitioning . Industrial and Engineering Chemistry Research 62 ( 28 ): 11165 – 11177 .
- Schweidtmann , A.M. , Esche , E. , Fischer , A. et al. ( 2021 ). Machine learning in chemical engineering: a perspective . Chemie Ingenieur Technik 93 ( 12 ): 2029 – 2039 .
-
Jiang , J.
,
Xiong , Y.
,
Zhang , Z.
, and
Rosen , D.W.
(
2022
).
Machine learning integrated design for additive manufacturing
.
Journal of Intelligent Manufacturing
33
(
4
):
1073
–
1086
.
10.1007/s10845-020-01715-6 Google Scholar
- Chen , Y. , Liu , X. , Lei , Y. et al. ( 2023 ). A novel hybrid process design for efficient recovery of hydrophilic ionic liquids from dilute aqueous solutions . AIChE Journal 69 : e18198 .