Theoretical Calculations of Heteroatom Substituted Zeolites
Xin Yu
State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, West No.30 Xiao Hong Shan, Wuhan, 430071 P.R. China
University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Beijing, 100049 P.R. China
Search for more papers by this authorWenjun Dong
State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, West No.30 Xiao Hong Shan, Wuhan, 430071 P.R. China
School of Materials Science and Engineering, Zhengzhou University, No.100 Science Avenue, Zhengzhou, Henan, 450001 P.R. China
Search for more papers by this authorWei Chen
State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, West No.30 Xiao Hong Shan, Wuhan, 430071 P.R. China
Search for more papers by this authorAnmin Zheng
State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, West No.30 Xiao Hong Shan, Wuhan, 430071 P.R. China
Search for more papers by this authorXin Yu
State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, West No.30 Xiao Hong Shan, Wuhan, 430071 P.R. China
University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Beijing, 100049 P.R. China
Search for more papers by this authorWenjun Dong
State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, West No.30 Xiao Hong Shan, Wuhan, 430071 P.R. China
School of Materials Science and Engineering, Zhengzhou University, No.100 Science Avenue, Zhengzhou, Henan, 450001 P.R. China
Search for more papers by this authorWei Chen
State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, West No.30 Xiao Hong Shan, Wuhan, 430071 P.R. China
Search for more papers by this authorAnmin Zheng
State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, West No.30 Xiao Hong Shan, Wuhan, 430071 P.R. China
Search for more papers by this authorPeng Wu
East China Normal University, North Zhongshan Rd. No. 3663, Shanghai, 200062 China
Search for more papers by this authorHao Xu
East China Normal University, North Zhongshan Rd. No. 3663, Shanghai, 200062 China
Search for more papers by this authorSummary
Besides experiments, theoretical calculation is an effective tool and important supplement to understand the catalytic active center, structural character, and Brønsted/Lewis acidity of heteroatom-substituted zeolites and further clarifies their catalyzed reaction mechanism. This chapter will review theoretical advances of common heteroatom substituted zeolites (e.g. TS-1, Sn-BEA, and BS-1) from perspective of metal site distribution and reaction mechanism to summarize the acid properties and applications of these porous metallosilicates. The whole content will be divided into three parts. The first part of this chapter is devoted to the Ti-containing zeolites and the related reaction mechanism of alkenes epoxidation and ketone ammoximation. The second part will present the Sn-containing zeolites, which emphasizes on their reaction mechanisms in biomass conversions. The final part of the chapter is to review the applications of other heteroatom substituted zeolites.
References
- Taramasso , M. , Perego , G. , and Notari , B. ( 1983 ). Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides . In: U.S. Patent No. 4,410,501. Washington, DC: U.S. Patent and Trademark Office.
- Wang , Y. , Zhou , D.H. , Yang , G. et al. ( 2004 ). A DFT study on isomorphously substituted MCM-22 zeolite . J. Phys. Chem. A 108 : 6730 – 6734 .
- Li , H.C. , Zhou , D.H. , Tian , D.X. et al. ( 2014 ). Framework stability and bronsted acidity of isomorphously substituted interlayer-expanded zeolite COE-4: a density functional theory study . ChemPhysChem 15 : 1700 – 1707 .
- Yang , G. , Zhou , L.J. , and Han , X.W. ( 2013 ). Structure, stability, and Lewis acidity of mono and double Ti, Zr, and Sn framework substitutions in BEA zeolites: a periodic density functional theory study . J. Phys. Chem. C 117 : 3976 – 3986 .
- Yang , G. , Zhou , L.J. , and Han , X.W. ( 2012 ). Lewis and Brönsted acidic sites in M 4+ -doped zeolites (M=Ti, Zr, Ge, Sn, Pb) as well as interactions with probe molecules: a DFT study . J. Mol. Catal. A Chem. 363–364 : 371 – 379 .
- Kang , Z.Z. , Fang , G.Y. , Ke , Q.P. et al. ( 2013 ). Superior catalytic performance of mesoporous zeolite TS-1 for the oxidation of bulky organic sulfides . ChemCatChem 5 : 2191 – 2194 .
- Lin , J.Z. , Xin , F. , Yang , L.B. , and Zhuang , Z. ( 2014 ). Synthesis, characterization of hierarchical TS-1 and its catalytic performance for cyclohexanone ammoximation . Cat. Com. 45 : 104 – 108 .
- Clerici , M.G. ( 2009 ). Titanium silicalite-1 . Metal Oxide Catal. 2 : 705 – 754 .
- Moliner , M. , Román-Leshkov , Y. , and Davis , M.E. ( 2010 ). Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water . Proc. Natl. Acad. Sci. U. S. A. 107 : 6164 – 6168 .
- Román-Leshkov , Y. , Moliner , M. , Labinger , J.A. , and Davis , M.E. ( 2010 ). Mechanism of glucose isomerization using a solid Lewis acid catalyst in water . Angew. Chem.-Int. Ed. 49 : 8954 – 8957 .
- Gunther , W.R. , Wang , Y. , Ji , Y.W. et al. ( 2012 ). Sn-beta zeolites with borate salts catalyse the epimerization of carbohydrates via an intramolecular carbon shift . Nat. Commun. 3 : 1109 .
- Chethana , B.K. and Mushrif , S.H. ( 2015 ). Brønsted and Lewis acid sites of Sn-beta zeolite, in combination with the borate salt, catalyze the epimerization of glucose: a density functional theory study . J. Catal. 323 : 158 – 164 .
- Vyver , S.V.D. , Odermatt , C. , Romero , K. et al. ( 2015 ). Solid Lewis acids catalyze the carbon–carbon coupling between carbohydrates and formaldehyde . ACS Catal. 5 : 972 – 977 .
- Deshpande , N. , Parulkar , A. , Joshi , R. et al. ( 2019 ). Epoxide ring opening with alcohols using heterogeneous Lewis acid catalysts: Regioselectivity and mechanism . J. Catal. 370 : 46 – 54 .
- Martausová , I. , Spustováa , D. , Cvejnc , D. et al. ( 2019 ). Catalytic activity of advanced titanosilicate zeolites in hydrogen peroxide S-oxidation of methyl(phenyl)sulfide . Catal. Today 324 : 144 – 153 .
- Ratnasamy , P. , Srinivas , D. , and Knozinger , H. ( 2004 ). Active sites and reactive intermediates in titanium silicate molecular sieves . Adv. Catal. 1 – 169 .
- Inagaki , S. , Tsuboi , Y. , Sasaki , M. et al. ( 2016 ). Enhancement of Para-selectivity in the phenol oxidation with H 2 O 2 over Ti-MCM-68 zeolite catalyst . Green Chem. 18 : 735 – 741 .
-
Kubota , Y.
,
Koyama , Y.
,
Yamada , T.
et al. (
2008
).
Synthesis and catalytic performance of Ti-MCM-68 for effective oxidation reactions
.
Chem. Commun.
6224
–
6226
.
10.1039/b814286f Google Scholar
- Pitinova-Stekrova , M. , Eliasova , P. , Weissenberger , T. et al. ( 2018 ). Highly selective synthesis of campholenic aldehyde over Ti-MWW catalysts by α- pinene oxide isomerization . Cat. Sci. Technol. 8 : 4690 – 4701 .
- Sasidharan , M. , Wu , P. , and Tatsumi , T. ( 2002 ). Epoxidation of α,β-unsaturated carbonyl compounds over various titanosilicates . J. Catal. 205 : 332 – 338 .
- Zhou , D.H. , Zhang , H.J. , Zhang , J.J. et al. ( 2014 ). Density functional theory investigations into the structure and spectroscopic properties of the Ti4+ species in Ti-MWW zeolite . Micropor. Mesopor. Mater. 195 : 216 – 226 .
- Petkov , P.S. , Simeonova , K. , Koleva , I.Z. et al. ( 2021 ). Defect formation, T-atom substitution and adsorption of guest molecules in MSE-type zeolite framework-DFT modeling . Molecules 26 : 7296 .
- Lamberti , C. , Bordiga , S. , Zecchina , A. et al. ( 2001 ). Ti location in the MFI framework of Ti-silicalite-1: a neutron powder diffraction study . J. Am. Chem. Soc. 123 : 2204 – 2212 .
- Ricchiardi , G. , Damin , A. , Bordiga , S. et al. ( 2001 ). Vibrational structure of titanium silicate catalysts. A spectroscopic and theoretical study . J. Am. Chem. Soc. 123 : 11409 – 11419 .
- Fan , W.B. , Duan , R.-G. , Yokoi , T. et al. ( 2008 ). Synthesis, crystallization mechanism, and catalytic properties of titanium-rich TS-1 free of extraframework titanium species . J. Am. Chem. Soc. 130 : 10120 – 10164 .
- Lamberti , C. , Bordiga , S. , Zecchina , A. et al. ( 1999 ). Structural characterization of Ti-silicalite-1: a synchrotron radiation x-ray powder diffraction study . J. Catal. 183 : 222 – 231 .
- Marra , G.L. , Artioli , G. , Fitch , A.N. et al. ( 2000 ). Orthorhombic to monoclinic phase transition in high-Ti-loaded TS-1: An attempt to locate Ti in the MFI framework by low temperature XRD . Micropor. Mesopor. Mater. 40 : 85 – 94 .
- Hijar , C.A. , Jacubinas , R.M. , Eckert , J. et al. ( 2000 ). The siting of Ti in TS-1 is non-random. Powder neutron diffraction studies and theoretical calculations of TS-1 and FeS-1 . J. Phys. Chem. B 104 : 12157 – 12164 .
- Henry , P.F. , Weller , M.T. , and Wilson , C.C. ( 2001 ). Structural investigation of TS-1: determination of the true nonrandom titanium framework substitution and silicon vacancy distribution from powder neutron diffraction studies using isotopes . J. Phys. Chem. B 105 : 7452 – 7458 .
- Deka , R.C. , Nasluzov , V.A. , Shor , E.A.I. et al. ( 2005 ). Comparison of all sites for Ti substitution in zeoliteTS-1 by an accurate embedded-cluster method . J. Phys. Chem. B 109 : 24304 – 24310 .
- Gamba , A. , Tabacchi , G. , and Fois , E. ( 2009 ). TS-1 from first principles . J. Phys. Chem. A 113 : 15006 – 15015 .
- Gordon , C.P. , Engler , H. , Tragl , A.S. et al. ( 2020 ). Efficient epoxidation over dinuclear sites in titanium silicalite-1 . Nature 586 : 708 – 713 .
- Dong , J.C. , Zhu , H.L. , Xiang , Y.J. et al. ( 2016 ). Toward a unified identification of Ti location in the MFI framework of high-Ti-loaded TS-1: combined EXAFS, XANES, and DFT study . J. Phys. Chem. C 120 : 20114 – 20124 .
- Xu , H. , Xu , H.X. , and Cheng , D.J. ( 2022 ). Resolving the reaction mechanism for oxidative hydration of ethylene toward ethylene glycol by titanosilicate catalysts . ACS Catal. 12 : 9446 – 9457 .
- Signorile , M. , Damin , A. , Bonino , F. et al. ( 2018 ). Computational assessment of relative sites stabilities and site-specific adsorptive properties of titanium silicalite-1 . J. Phys. Chem. C 122 : 1612 – 1621 .
- Yang , G. , Zhou , L.J. , Liu , X.C. et al. ( 2011 ). Density functional calculations on the distribution, acidity, and catalysis of Ti IV and Ti III ions in MCM-22 zeolite . Chem. A Eur. J. 17 : 1614 – 1621 .
- Yang , G. , Zhuang , J.Q. , Ma , D. et al. ( 2008 ). A joint experimental–theoretical study on trimethylphosphine adsorption on the Lewis acidic sites present in TS-1 zeolite . J. Mol. Struct. 882 : 24 – 29 .
- Sastre , G. and Corma , A. ( 1999 ). Relation between structure and Lewis acidity of Ti-beta and TS-1 zeolites – a quantum-chemical study . Chem. Phys. Lett. 302 : 447 – 453 .
- Montejo-Valencia , B.D. , Salcedo-Pérez , J.L. , and Curet-Arana , M.C. ( 2016 ). DFT study of closed and open sites of BEA, FAU, MFI, and BEC zeolites substituted with tin and titanium . J. Phys. Chem. C 120 : 2176 – 2186 .
- Barker , C.M. , Gleeson , D. , Kaltsoyannis , N. et al. ( 2002 ). On the structure and coordination of the oxygen-donating species in Ti-MCM-41↑TBHP oxidation catalysts: a density functional theory and EXAFS study . Phys. Chem. Chem. Phys. 4 : 1228 – 1240 .
- Chaudhari , K. , Srinivas , D. , and Ratnasamy , P. ( 2001 ). Reactive oxygen species in titanosilicates TS-1 and TiMCM-41: An in situ EPR spectroscopic study . J. Catal. 203 : 25 – 32 .
- Sever , R.R. and Root , T.W. ( 2003 ). DFT study of solvent coordination effects on titanium-based epoxidation catalysts. Part one: formation of the titanium hydroperoxo intermediate . J. Phys. Chem. B 107 : 4080 – 4089 .
- Nie , X.W. , Ren , X.X. , Ji , X.J. et al. ( 2019 ). Mechanistic insight into propylene epoxidation with H 2 O 2 over titanium silicalite-1: effects of zeolite confinement and solvent . J. Phys. Chem. B 123 : 7410 – 7423 .
- Munakata , H. , Oumi , Y. , and Miyamoto , A. ( 2001 ). A DFT study on peroxo-complex in titanosilicate catalyst: hydrogen peroxide activation on titanosilicalite-1 catalyst and reaction mechanisms for catalytic olefin epoxidation and for hydroxylamine formation from ammonia . J. Phys. Chem. B 105 : 3493 – 3501 .
- Sirijaraensre , J. and Limtrakul , J. ( 2013 ). Mechanisms of the ammonia oxidation by hydrogen peroxide over the perfect and defective Ti species of TS-1 zeolite . Phys. Chem. Chem. Phys. 15 : 18093 – 18100 .
- Vayssilov , G.N. and Santen , R.A.V. ( 1998 ). Catalytic activity of titanium silicalites – a DFT study . J. Catal. 175 : 170 – 174 .
- Wells , D.H. Jr. , Delgass , W.N. Jr. , and Thomson , K.T. ( 2004 ). Evidence of defect-promoted reactivity for epoxidation of propylene in titanosilicate (TS-1) catalysts: a DFT study . J. Am. Chem. Soc. 126 : 2956 – 2962 .
- Limtrakul , J. , Inntam , C. , and Truong , T.N. ( 2004 ). Density functional theory study of the ethylene epoxidation over Ti-substituted silicalite (TS-1) . J. Mol. Catal. A Chem. 207 : 139 – 148 .
- Karlsen , E. and Schoffel , K. ( 1996 ). Titanium-silicalite catalyzed epoxidation of ethylene with hydrogen peroxide – a theoretical study . Catal. Today 32 : 107 – 114 .
- Chu , C.Q. , Zhao , H.T. , Qi , Y.Y. , and Xin , F. ( 2013 ). Density functional theory studies on hydroxylamine mechanism of cyclohexanone ammoximation on titanium silicalite-1 catalyst . J. Mol. Model. 19 : 2217 – 2224 .
- Corma , A. , Nemeth , L.T. , Renz , M. , and Valencia , S. ( 2001 ). Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer-Villiger oxidations . Nature 412 : 423 – 425 .
- Xia , C.J. , Ju , L. , Zhao , Y. et al. ( 2015 ). Heterogeneous oxidation of cyclohexanone catalyzed by TS-1: combined experimental and DFT studies . Chinese J. Catal. 36 : 845 – 854 .
- Sengupta , A. , Kamble , P.D. , Basu , J.K. , and Sengupta , S. ( 2012 ). Kinetic study and optimization of oxidative desulfurization of benzothiophene using mesoporous titanium silicate-1 catalyst . Ind. Eng. Chem. Res. 51 : 147 – 157 .
- Cheng , S.F. , Liu , Y.M. , Gao , J.B. et al. ( 2006 ). Catalytic oxidation of benzothiophene and dibenzothiophene in model light oil over Ti-MWW . Chinese J. Catal. 27 : 547 – 549 .
- Wang , H.L. , Yu , M. , and Lin , Z.G. ( 2019 ). A DFT study on catalytic oxidative desulfurization with H 2 O 2 over Ti-MWW zeolite . J. Mol. Model. 25 : 106 .
- Wang , H.L. , Deng , Y.Q. , and Zhou , R.J. ( 2018 ). Aromatic sulfur compounds oxidation with H 2 O 2 over fully coordinated and defect sites in Ti-beta zeolites: evaluation by density functional theory . Theoret. Chem. Acc. 137 : 66 .
- Bian , H. , Zhang , H.H. , Li , D.Z. et al. ( 2020 ). Insight into the oxidative desulfurization mechanism of aromatic sulfur compounds over Ti-MWW zeolite: a computational study . Micropor. Mesopor. Mater. 294 : 109837 .
- Bian , H. , Wang , F. , Wu , S. et al. ( 2021 ). A DFT study on the mechanism of catalytic oxidation desulfurization over Ti-MWW zeolite . J. Cluster Sci. 3 : 2103 – 2112 .
- Corma , A. , Domine , M.E. , and Valencia , S. ( 2003 ). Water-resistant solid Lewis acid catalysts: Meerwein–Ponndorf–Verley and oppenauer reactions catalyzed by tin-beta zeolite . J. Catal. 215 : 294 – 304 .
- Corma , A. , Domine , M.E. , Nemeth , L. , and Valencia , S. ( 2002 ). Al-free Sn-beta zeolite as a catalyst for the selective reduction of carbonyl compounds (Meerwein–Ponndorf–Verley reaction) . J. Am. Chem. Soc. 124 : 3194 – 3195 .
- Boronat , M. , Corma , A. , and Renz , M. ( 2006 ). Mechanism of the Meerwein–Ponndorf–Verley–Oppenauer (MPVO) redox equilibrium on Sn- and Zr-beta zeolite catalysts . J. Phys. Chem. B 110 : 21168 – 21174 .
- Holm , M.S. , Pagán-Torres , Y.J. , Saravanamurugan , S. et al. ( 2012 ). Sn-beta catalysed conversion of hemicellulosic sugars . Green Chem. 14 : 702 – 706 .
- Mahmoud , E. , Yu , J. , Gorte , R.J. , and Lobo , R.F. ( 2015 ). Diels–Alder and dehydration reactions of biomass-derived furan and acrylic acid for the synthesis of benzoic acid . ACS Catal. 5 : 6946 – 6955 .
- Vyver , S.V.D. and Román-Leshkov , Y. ( 2015 ). Metalloenzyme-like zeolites as Lewis acid catalysts for c-c bond formation . Angew. Chem.-Int. Ed. 54 : 12554 – 12561 .
- Li , H. , Yang , S. , Saravanamurugan , S. , and Riisager , A. ( 2017 ). Glucose isomerization by enzymes and chemo-catalysts: status and current advances . ACS Catal. 7 : 3010 – 3029 .
- Ennaert , T. , Van Aelst , J. , Dijkmans , J. et al. ( 2016 ). Potential and challenges of zeolite chemistry in the catalytic conversion of biomass . Chem. Soc. Rev. 45 : 584 – 611 .
- Boronat , M. , Concepción , P. , Corma , A. et al. ( 2005 ). Determination of the catalytically active oxidation Lewis acid sites in Sn-beta zeolites, and their optimisation by the combination of theoretical and experimental studies . J. Catal. 234 : 111 – 118 .
- Yang , G. , Pidko , E.A. , and Hensen , E.J. ( 2013 ). The mechanism of glucose isomerization to fructose over Sn-BEA zeolite: a periodic density functional theory study . ChemSusChem 6 : 1688 – 1696 .
- Bermejo-Devala , R. , Assary , R.S. , Nikolla , E. et al. ( 2012 ). Metalloenzyme-like catalyzed isomerizations of sugars by Lewis acid zeolites . Proc. Natl. Acad. Sci. U. S. A. 109 : 9727 – 9732 .
- Li , Y.-P. , Head-Gordon , M. , and Bell , A.T. ( 2014 ). Analysis of the reaction mechanism and catalytic activity of metal-substituted beta zeolite for the isomerization of glucose to fructose . ACS Catal. 4 : 1537 – 1545 .
- Li , G.N. , Pidko , E.A. , and Hensen , E.J. ( 2014 ). Synergy between Lewis acid sites and hydroxyl groups for the isomerization of glucose to fructose over Sn-containing zeolites: a theoretical perspective . Cat. Sci. Technol. 4 : 2241 – 2250 .
- Montejo-Valencia , B.D. and Curet-Arana , M.C. ( 2019 ). Periodic DFT study of the opening of fructose and glucose rings and the further conversion of fructose to trioses catalyzed by M-BEA (M= Sn, Ti, Zr, or Hf) . J. Phys. Chem. C 123 : 3532 – 3540 .
- Bermejo-Deval , R. , Orazov , M. , Gounder , R. et al. ( 2014 ). Active sites in Sn-beta for glucose isomerization to fructose and epimerization to mannose . ACS Catal. 4 : 2288 – 2297 .
- Rai , N. , Caratzoulas , S. , and Vlachos , D.G. ( 2013 ). Role of silanol group in Sn-beta zeolite for glucose isomerization and epimerization reactions . ACS Catal. 3 : 2294 – 2298 .
- Yang , G. and Zhou , L.J. ( 2018 ). Glucose conversions catalyzed by zeolite Sn-bea: synergy among Na + exchange, solvent, and proximal silanol nest as well as critical specifics for catalytic mechanisms . ACS Catal. 8 : 6691 – 6698 .
- Li , S. , Josephson , T. , Vlachos , D.G. , and Caratzoulas , S. ( 2017 ). The origin of selectivity in the conversion of glucose to fructose and mannose in Sn-BEA and Na-exchanged Sn-BEA zeolites . J. Catal. 355 : 11 – 16 .
- Christianson , J.R. , Caratzoulas , S. , and Vlachos , D.G. ( 2015 ). Computational insight into the effect of Sn-beta Na exchange and solvent on glucose isomerization and epimerization . ACS Catal. 5 : 5256 – 5263 .
- Yue , Y.Y. , Fu , J. , Wang , C.M. et al. ( 2021 ). Propane dehydrogenation catalyzed by single Lewis acid site in Sn-beta zeolite . J. Catal. 395 : 155 – 167 .
- Hu , Z.-P. , Qin , G. , Han , J. et al. ( 2022 ). Atomic insight into the local structure and microenvironment of isolated co-motifs in MFI zeolite frameworks for propane dehydrogenation . J. Am. Chem. Soc. 144 : 12127 – 12137 .
- Yun , J.H. and Lobo , R.F. ( 2014 ). Radical cation intermediates in propane dehydrogenation and propene hydrogenation over H-[Fe] zeolites . J. Phys. Chem. C 118 : 27292 – 27300 .
- Yun , J.H. and Lobo , R.F. ( 2014 ). Catalytic dehydrogenation of propane over iron-silicate zeolites . J. Catal. 312 : 263 – 270 .
- Treu , P. , Huber , P. , Plessow , P.N. et al. ( 2022 ). Lewis acid Sn-bea catalysts for the cycloaddition of isoprene and methyl acrylate: a greener route to bio-derived monomers . Cat. Sci. Technol. 12 : 7439 – 7447 .
- Luo , H.Y. , Lewis , J.D. , and Roman-Leshkov , Y. ( 2016 ). Lewis acid zeolites for biomass conversion: perspectives and challenges on reactivity, synthesis, and stability . Ann. Rev. Chem. Biomol. Eng. 7 : 27.21 – 27.30 .
- Wang , Y.R. , Lewis , J.D. , and Román-Leshkov , Y. ( 2016 ). Synthesis of itaconic acid ester analogues via self-aldol condensation of ethyl pyruvate catalyzed by hafnium BEA zeolites . ACS Catal. 6 : 2739 – 2744 .
- Rojas-Buzo , S. , Concepción , P. , Corma , A. et al. ( 2021 ). In-situ-generated active Hf-hydride in zeolites for the tandem N-alkylation of amines with benzyl alcohol . ACS Catal. 11 : 8049 – 8061 .
- Zhang , M.H. , Guan , X.Y. , Zhuang , J.Y. , and Yu , Y.Z. ( 2022 ). Insights into the mechanism of ethanol conversion into 1,3-butadiene on Zr-β zeolite . Appl. Surf. Sci. 579 : 152212 .
- Dong , X.Q. , Lu , J. , Yu , Y.Z. , and Zhang , M.H. ( 2018 ). A DFT study on Zr-SBA-15 catalyzed conversion of ethanol to 1,3-butadiene . Phys. Chem. Chem. Phys. 20 : 12970 – 12978 .