Spectroscopic Characterization of Heteroatom-Containing Zeolites
Guodong Qi
Division of magnetic resonance for materials and chemistry, National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, West No.30 Xiao Hong Shan, Wuhan, 430071 China
Search for more papers by this authorJun Xu
Division of magnetic resonance for materials and chemistry, National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, West No.30 Xiao Hong Shan, Wuhan, 430071 China
Search for more papers by this authorFeng Deng
Division of magnetic resonance for materials and chemistry, National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, West No.30 Xiao Hong Shan, Wuhan, 430071 China
Search for more papers by this authorGuodong Qi
Division of magnetic resonance for materials and chemistry, National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, West No.30 Xiao Hong Shan, Wuhan, 430071 China
Search for more papers by this authorJun Xu
Division of magnetic resonance for materials and chemistry, National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, West No.30 Xiao Hong Shan, Wuhan, 430071 China
Search for more papers by this authorFeng Deng
Division of magnetic resonance for materials and chemistry, National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, West No.30 Xiao Hong Shan, Wuhan, 430071 China
Search for more papers by this authorPeng Wu
East China Normal University, North Zhongshan Rd. No. 3663, Shanghai, 200062 China
Search for more papers by this authorHao Xu
East China Normal University, North Zhongshan Rd. No. 3663, Shanghai, 200062 China
Search for more papers by this authorSummary
Heteroatom-containing zeolites have attracted increasing research interest in the field of heterogeneous catalysis because of their distinct properties compared with conventional aluminosilicate zeolites in terms of activity, bifunctionality, and stability. A precise design of heteroatom sites in zeolites from the aspects of content, types, and locations is critical to obtain high catalytic performance, which necessitates the characterization of heteroatom species in zeolites, particularly during their preparation, pre-treatment, and application processes. In this chapter, various spectroscopic techniques for the characterization of heteroatom-containing zeolites are briefly summarized. X-ray-based techniques are discussed in Section 8.1 as powerful tools to provide structural information about zeolite frameworks and the coordination and valence states of heteroatoms. Ultraviolet–visible–near infrared spectroscopy is introduced in Section 8.2, which is a convenient and sensitive method to probe the incorporation and location of heteroatoms in zeolites. Section 8.3 addresses Raman spectroscopy for the investigation of the synthesis mechanism and assembly of heteroatoms in zeolites. Solid-state nuclear magnetic resonance (NMR) spectroscopy is presented in Section 8.4, focusing on double-resonance and two-dimensional correlation NMR methods for the atomic-level understanding of the nature of heteroatom sites and their host–guest interactions with zeolites. The information obtained by these spectroscopic techniques plays a key role in the elucidation of structure–property relationships of heteroatom-containing zeolites, which is highly relevant to their technological applications in heterogeneous catalysis.
References
- Tangcharoen , T. , Klysubun , W. , Kongmark , C. , and Pecharapa , W. ( 2014 ). Synchrotron X-ray absorption spectroscopy and magnetic characteristics studies of metal ferrites (metal = Ni, Mn, Cu) synthesized by sol–gel auto-combustion method . Phys. Status Solidi A Appl. Mater. Sci. 211 : 1903 – 1911 .
- Tangcharoen , T. , Klysubun , W. , and Kongmark , C. ( 2019 ). Synchrotron X-ray absorption spectroscopy and cation distribution studies of NiAl 2 O 4 , CuAl 2 O 4 , and ZnAl 2 O 4 nanoparticles synthesized by sol-gel auto combustion method . J. Mol. Struct. 1182 : 219 – 229 .
- Evans , J. ( 2018 ). X-Ray Absorption Spectroscopy for the Chemical and Materials Sciences , 1 – 8 . John Wiley & Sons Ltd .
- Tatlier , M. ( 2011 ). Artificial neural network methods for the prediction of framework crystal structures of zeolites from XRD data . Neural Comput. Appl. 20 : 365 – 371 .
-
Wright , P.A.
,
Jones , R.H.
,
Natarajan , S.
et al. (
1993
).
Synthesis and structure of a novel large-pore microporous magnesium-containing aluminophosphate (DAF-1)
.
J. Chem. Soc, Chem. Commun.
633
–
635
.
10.1039/c39930000633 Google Scholar
- S. Vortmann , B. Marler , P. Daniels , I. Dierdorf and H. Gies ( 1995 ). In Studies in Surface Science and Catalysis ; H. G. Karge , J. Weitkamp , Eds.; Elsevier . 98 : 262 – 263 .
- Liu , L.F. , Yu , Z.B. , Chen , H. et al. ( 2013 ). Disorder in extra-large pore zeolite ITQ-33 revealed by single crystal XRD . Cryst. Growth Des. 13 : 4168 – 4171 .
- Park , S.-H. , Parise , J.B. , Gies , H. et al. ( 2000 ). A new porous lithosilicate with a high ionic conductivity and ion-exchange capacity . J. Am. Chem. Soc. 122 : 11023 – 11024 .
- Corma , A. , Puche , M. , Rey , F. et al. ( 2003 ). A zeolite structure (ITQ-13) with three sets of medium-pore crossing channels formed by 9- and 10-rings . Angew. Chem. Int. Ed. 42 : 1156 – 1159 .
- Burton , A.W. ( 2004 ). Structure solution of zeolites from powder diffraction data . Z. Kristallogr. 219 : 866 – 880 .
- Blasco , T. , Corma , A. , Diaz-Cabanas , M.J. et al. ( 2004 ). Synthesis, characterization, and framework heteroatom localization in ITQ-21 . J. Am. Chem. Soc. 126 : 13414 – 13423 .
- Gramm , F. , Baerlocher , C. , McCusker , L.B. et al. ( 2006 ). Complex zeolite structure solved by combining powder diffraction and electron microscopy . Nature 444 : 79 – 81 .
- Deem , M.W. and Newsam , J.M. ( 1989 ). Determination of 4-connected framework crystal structures by simulated annealing . Nature 342 : 260 – 262 .
- Deem , M.W. and Newsam , J.M. ( 1992 ). Framework crystal structure solution by simulated annealing: test application to known zeolite structures . J. Am. Chem. Soc. 114 : 7189 – 7198 .
- Falcioni , M. and Deem , M.W. ( 1999 ). A biased Monte Carlo scheme for zeolite structure solution . J. Chem. Phys. 110 : 1754 – 1766 .
- Grosse-Kunstleve , R.W. , McCusker , L.B. , and Baerlocher , C. ( 1997 ). Powder diffraction data and crystal chemical information combined in an automated structure determination procedure for zeolites . J. Appl. Crystallogr. 30 : 985 – 995 .
- Rius , J. ( 1999 ). XLENS, a direct methods program based on the modulus sum function: its application to powder data . Powder Diffract. 14 : 267 – 273 .
- Corma , A. , Díaz-Cabañas , M.J. , Martínez-Triguero , J. et al. ( 2002 ). A large-cavity zeolite with wide pore windows and potential as an oil refining catalyst . Nature 418 : 514 – 517 .
- Corma , A. , Rey , F. , Valencia , S. et al. ( 2003 ). A zeolite with interconnected 8-, 10- and 12-ring pores and its unique catalytic selectivity . Nat. Mater. 2 : 493 – 497 .
- Rius , J. ( 1993 ). Derivation of a new tangent formula from Patterson-function arguments . Acta Crystallogr. A 49 : 406 – 409 .
- Treacy , M.M.J. , Newsam , J.M. , and Deem , M.W. ( 1988 ). Diffraction from zeolites containing planar faults . MRS Online Proc. Library 138 : 497 – 502 .
- Treacy , M.M.J. , Vaughan , D.E.W. , Strohmaier , K.G. , and Newsam , J.M. ( 1996 ). Intergrowth segregation in FAU-EMT zeolite materials . Proc. R. Soc. A – Math. Phys. Eng. Sci. 452 : 813 – 840 .
- Jordá , J.L. , McCusker , L.B. , Baerlocher , C. et al. ( 2003 ). Structure analysis of the novel microporous aluminophosphate IST-1 using synchrotron powder diffraction data and HETCOR MAS NMR . Microporous Mesoporous Mater. 65 : 43 – 57 .
- Wagner , P. , Terasaki , O. , Ritsch , S. et al. ( 1999 ). Electron diffraction structure solution of a nanocrystalline zeolite at atomic resolution . J. Phys. Chem. B 103 : 8245 – 8250 .
- de Groot , F. ( 2001 ). High-resolution X-ray emission and X-ray absorption spectroscopy . Chem. Rev. 101 : 1779 – 1808 .
- Wende , H. ( 2004 ). Recent advances in x-ray absorption spectroscopy . Rep. Prog. Phys. 67 : 2105 – 2181 .
- van Bokhoven , J.A. and Lamberti , C. ( 2014 ). Structure of aluminum, iron, and other heteroatoms in zeolites by X-ray absorption spectroscopy . Coord. Chem. Rev. 277–278 : 275 – 290 .
- Bordiga , S. , Groppo , E. , Agostini , G. et al. ( 2013 ). Reactivity of surface species in heterogeneous catalysts probed by in situ X-ray absorption techniques . Chem. Rev. 113 : 1736 – 1850 .
- Bokhoven , J.A.v. , Nabi , T. , Sambe , H. et al. ( 2001 ). Interpretation of the Al K- and L II/III -edges of aluminium oxides: differences between tetrahedral and octahedral Al explained by different local symmetries . J. Phys. Condens. Matter 13 : 10247 – 10260 .
- Al-majnouni , K.A. , Hould , N.D. , Lonergan , W.W. et al. ( 2010 ). High-temperature decomposition of Brønsted acid sites in gallium-substituted zeolites . J. Phys. Chem. C 114 : 19395 – 19405 .
- Bordiga , S. , Coluccia , S. , Lamberti , C. et al. ( 1994 ). XAFS study of Ti-silicalite: structure of framework Ti(IV) in the presence and absence of reactive molecules (H2O, NH3) and comparison with ultraviolet-visible and IR results . J. Phys. Chem. 98 : 4125 – 4132 .
- Tuilier , M.H. , Lopez , A. , Guth , J.L. , and Kessler , H. ( 1991 ). EXAFS study of germanium-rich MFI-type zeolites . Zeolites 11 : 662 – 665 .
- Bare , S.R. , Kelly , S.D. , Sinkler , W. et al. ( 2005 ). Uniform catalytic site in Sn-β-zeolite determined using X-ray absorption fine structure . J. Am. Chem. Soc. 127 : 12924 – 12932 .
- Anpo , M. , Zhang , S.G. , Higashimoto , S. et al. ( 1999 ). Characterization of the local structure of the vanadium silicalite (VS-2) catalyst and its photocatalytic reactivity for the decomposition of NO into N 2 and O 2 . J. Phys. Chem. B 103 : 9295 – 9301 .
- Fan , F. , Feng , Z. , and Li , C. ( 2010 ). UV Raman spectroscopic study on the synthesis mechanism and assembly of molecular sieves . Chem. Soc. Rev. 39 : 4794 – 4801 .
- van Bokhoven , J.A. , van der Eerden , A.M.J. , and Koningsberger , D.C. ( 2003 ). Three-coordinate aluminum in zeolites observed with in situ X-ray absorption near-edge spectroscopy at the Al K-edge: flexibility of aluminum coordinations in zeolites . J. Am. Chem. Soc. 125 : 7435 – 7442 .
-
Fröba , M.
,
Wong , J.
,
Behrens , P.
et al. (
1995
).
Correlation of multiple scattering features in XANES spectra of Al and Si K edges to the AlOSi bond angle in aluminosilicate sodalites: an empirical study
.
Physica B
208–209
:
65
–
67
.
10.1016/0921-4526(94)00820-L Google Scholar
- Koningsberger , D.C. and Miller , J.T. ( 1994 ). Local structure determination of aluminum in Y zeolite: application of low energy X-ray absorption fine structure spectroscopy . Catal. Lett. 29 : 77 – 90 .
- van Bokhoven , J.A. , van der Eerden , A.M.J. , and Prins , R. ( 2004 ). Local structure of the zeolitic catalytically active site during reaction . J. Am. Chem. Soc. 126 : 4506 – 4507 .
- Joyner , R.W. , Smith , A.D. , Stockenhuber , M. , and van den Berg , M.W.E. ( 2004 ). The local structure of aluminium sites in zeolites . Phys. Chem. Chem. Phys. 6 : 5435 – 5439 .
- van der Eerden , A.M.J. , van Bokhoven , J.A. , Smith , A.D. , and Koningsberger , D.C. ( 2000 ). Apparatus for in situ x-ray absorption fine structure studies on catalytic systems in the energy range 1000 eV<E<3500 eV . Rev. Sci. Instrum. 71 : 3260 – 3266 .
- Agostini , G. , Lamberti , C. , Palin , L. et al. ( 2010 ). In situ XAS and XRPD parametric Rietveld refinement to understand dealumination of Y zeolite catalyst . J. Am. Chem. Soc. 132 : 667 – 678 .
- van Bokhoven , J.A. , van der Eerden , A.M.J. , Smith , A.D. , and Koningsberger , D.C. ( 1999 ). Design and construction on an in situ cell for catalytic studies on elements with 12 < Z < 20 . J. Synchrotron Radiat. 6 : 201 – 203 .
- Drake , I.J. , Zhang , Y. , Gilles , M.K. et al. ( 2006 ). An in situ Al K-edge XAS investigation of the local environment of H + - and Cu + -exchanged USY and ZSM-5 zeolites . J. Phys. Chem. B 110 : 11665 – 11676 .
- Berlier , G. , Spoto , G. , Bordiga , S. et al. ( 2002 ). Evolution of extraframework iron species in Fe silicalite: 1. Effect of Fe content, activation temperature, and interaction with redox agents . J. Catal. 208 : 64 – 82 .
- Berlier , G. , Spoto , G. , Fisicaro , P. et al. ( 2002 ). Co-ordination and oxidation changes undergone by iron species in Fe-silicalite upon template removal, activation and interaction with N 2 O: an in situ X-ray absorption study . Microchem. J. 71 : 101 – 116 .
- Grünert , W. and Schlögl , R. ( 2004 ). Characterization I , Molecular Sieves—Science and Technology , vol. 4 (ed. H.G. Karge and J. Weitkamp ), 467 – 515 . Berlin, Heidelberg : Springer Berlin Heidelberg .
- Gruenert , W. , Muhler , M. , Schroeder , K.-P. et al. ( 1994 ). Investigations of zeolites by photoelectron and ion scattering spectroscopy. 2. A new interpretation of XPS binding energy shifts in zeolites . J. Phys. Chem. 98 : 10920 – 10929 .
- Barr , T.L. , Chen , L.M. , Mohsenian , M. , and Lishka , M.A. ( 1988 ). XPS valence band study of zeolites and related systems. 1. General chemistry and structure . J. Am. Chem. Soc. 110 : 7962 – 7975 .
- Stöcker , M. ( 1996 ). X-ray photoelectron spectroscopy on zeolites and related materials . Microporous Mater. 6 : 235 – 257 .
- Czanderna , A.W. ( 2012 ). Methods of Surface Analysis . Elsevier .
- Kaushik , V.K. , Bhat , S.G.T. , and Corbin , D.R. ( 1993 ). Surface composition and electronic structure of zeolites using X-ray photoelectron spectroscopy . Zeolites 13 : 671 – 677 .
- Sato , K. , Nishimura , Y. , Imamura , M. et al. ( 2002 ). Application of synchrotron radiation XPS to the in-depth profiling of HY zeolite particles . Anal. Sci. 17 : i1061 – i1064 .
- Knecht , J. and Stork , G. ( 1977 ). Quantitative Analyse von Zeolithen mit Hilfe der Röntgenphotoelektronenspektroskopie . Fresenius Z. Anal. Chem. 283 : 105 – 108 .
- Knecht , J. and Stork , G. ( 1977 ). Quantitative Analyse von Zeolithen mit Hilfe der Röntgenphotoelektronenspektroskopie . Fresenius Z. Anal. Chem. 286 : 47 – 49 .
- Kanazirev , V. , Price , G.L. , and Tyuliev , G. ( 1992 ). XPS study on the effect of hydrogen treatment on the state of gallium in Ga 2 O 3 /HZSM-5 mechanically mixed catalysts . Zeolites 12 : 846 – 850 .
- Grohmann , I. , Pilz , W. , Walther , G. et al. ( 1994 ). XPS-investigation of titanium modified MFI-type zeolites . Surf. Interface Anal. 22 : 403 – 406 .
- On , D.T. , Bonneviot , L. , Bittar , A. et al. ( 1992 ). Titanium sites in titanium silicalites: an XPS, XANES and EXAFS study . J. Mol. Catal. 74 : 233 – 246 .
- Moretti , G. , Salvi , A.M. , Guascito , M.R. , and Langerame , F. ( 2004 ). An XPS study of microporous and mesoporous titanosilicates . Surf. Interface Anal. 36 : 1402 – 1412 .
- Narayana , M. , Contarini , S. , and Kevan , L. ( 1985 ). X-ray photoelectron and electron spin resonance spectroscopic studies of Cu-NaY zeolites . J. Catal. 94 : 370 – 375 .
- Contarini , S. and Kevan , L. ( 1986 ). X-ray photoelectron spectroscopic study of copper-exchanged X- and Y-type sodium zeolites: resolution of two cupric ion components and dependence on dehydration and X-irradiation . J. Phys. Chem. 90 : 1630 – 1632 .
- Shpiro , E.S. , Grünert , W. , Joyner , R.W. , and Baeva , G.N. ( 1994 ). Nature, distribution and reactivity of copper species in over-exchanged Cu-ZSM-5 catalysts: an XPS/XAES study . Catal. Lett. 24 : 159 – 169 .
- Gruenert , W. , Sauerlandt , U. , Schloegl , R. , and Karge , H.G. ( 1993 ). XPS investigations of lanthanum in faujasite-type zeolites . J. Phys. Chem. 97 : 1413 – 1419 .
- Kuznicki , S.M. and Eyring , E.M. ( 1980 ). An ESCA study of rhodium(III)-exchanged zeolite catalysts . J. Catal. 65 : 227 – 230 .
- Schoonheydt , R.A. ( 2010 ). UV-VIS-NIR spectroscopy and microscopy of heterogeneous catalysts . Chem. Soc. Rev. 39 : 5051 – 5066 .
- Giordanino , F. , Vennestrøm , P.N. , Lundegaard , L.F. et al. ( 2013 ). Characterization of Cu-exchanged SSZ-13: a comparative FTIR, UV-Vis, and EPR study with Cu-ZSM-5 and Cu-β with similar Si/Al and Cu/Al ratios . Dalton Trans. 42 : 12741 – 12761 .
- Howe , R.F. ( 1996 ). Studies in Surface Science and Catalysis , vol. 102 (ed. H. Chon , S.I. Woo , and S.E. Park ), 97 – 139 . Elsevier .
- Huybrechts , D.R.C. , Debruycker , L. , and Jacobs , P.A. ( 1990 ). Oxyfunctionalization of alkanes with hydrogen peroxide on titanium silicalite . Nature 345 : 240 – 242 .
- Corma , A. , Nemeth , L.T. , Renz , M. , and Valencia , S. ( 2001 ). Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer-Villiger oxidations . Nature 412 : 423 – 425 .
- Bordiga , S. , Lamberti , C. , Bonino , F. et al. ( 2015 ). Probing zeolites by vibrational spectroscopies . Chem. Soc. Rev. 44 : 7262 – 7341 .
- Corma , A. , Domine , M.E. , Nemeth , L. , and Valencia , S. ( 2002 ). Al-free Sn-Beta zeolite as a catalyst for the selective reduction of carbonyl compounds (Meerwein–Ponndorf–Verley reaction) . J. Am. Chem. Soc. 124 : 3194 – 3195 .
- Sushkevich , V.L. , Ivanova , I.I. , Tolborg , S. , and Taarning , E. ( 2014 ). Meerwein-Ponndorf-Verley-Oppenauer reaction of crotonaldehyde with ethanol over Zr-containing catalysts . J. Catal. 316 : 121 – 129 .
- Van de Vyver , S. and Roman-Leshkov , Y. ( 2015 ). Metalloenzyme-like zeolites as Lewis acid catalysts for C-C bond formation . Angew. Chem. Int. Ed. 54 : 12554 – 12561 .
- Palagin , D. , Sushkevich , V.L. , and Ivanova , I.I. ( 2016 ). C–C coupling catalyzed by zeolites: is enolization the only possible pathway for aldol condensation? J. Phys. Chem. C 120 : 23566 – 23575 .
- Holm , M.S. , Saravanamurugan , S. , and Taarning , E. ( 2010 ). Conversion of sugars to lactic acid derivatives using heterogeneous zeotype catalysts . Science 328 : 602 – 605 .
- Bai , R. , Qiming , S. , Song , Y. et al. ( 2018 ). Intermediate-crystallization promoted catalytic activity of titanosilicate zeolites . J. Mater. Chem. A 6 : 8757 – 8762 .
- Sanz , R. , Serrano , D.P. , Pizarro , P. , and Moreno , I. ( 2011 ). Hierarchical TS-1 zeolite synthesized from SiO 2 TiO 2 xerogels imprinted with silanized protozeolitic units . Chem. Eng. J. 171 : 1428 – 1438 .
-
Dugkhuntod , P.
,
Maineawklang , N.
,
Rodaum , C.
et al. (
2022
).
Synthesis and characterization of Sn, Ge, and Zr isomorphous substituted MFI nanosheets for glucose isomerization to fructose
.
ChemPlusChem
87
:
e202100289
.
10.1002/cplu.202100515 Google Scholar
- Lizhi , W. , Xiujuan , D. , Shufang , Z. et al. ( 2016 ). Synthesis of a highly active oxidation catalyst with improved distribution of titanium coordination states . Chem. Commun. 52 : 8679 – 8682 .
- Zhao , P. , Li , Z. , Zhang , Y. et al. ( 2022 ). Tuning Lewis acid sites in TS-1 zeolites for hydroxylation of anisole with hydrogen peroxide . Microporous Mesoporous Mater. 335 : 111840 .
- Wang , Y. , Li , T. , Li , C. et al. ( 2021 ). One-pot green synthesis of Fe-ZSM-5 zeolite containing framework heteroatoms via dry gel conversion for enhanced propylene selectivity of catalytic cracking catalyst . J. Mater. Sci. 56 : 18050 – 18060 .
- Fan , W.B. , Fan , B.B. , Shen , X.H. et al. ( 2009 ). Effect of ammonium salts on the synthesis and catalytic properties of TS-1 . Microporous Mesoporous Mater. 122 : 301 – 308 .
- Huang , M. , Wen , Y. , Wei , H. et al. ( 2021 ). The clean synthesis of small-particle TS-1 with high-content framework Ti by using NH 4 HCO 3 and suspended seeds as an assistant . ACS Omega 6 : 13015 – 13023 .
- Xiong , G. , Cao , Y. , Guo , Z. et al. ( 2016 ). The roles of different titanium species in TS-1 zeolite in propylene epoxidation studied by in situ UV Raman spectroscopy . Phys. Chem. Chem. Phys. 18 : 190 – 196 .
- Wu , P. , Tatsumi , T. , Komatsu , T. , and Yashima , T. ( 2001 ). A novel titanosilicate with MWW structure. I. Hydrothermal synthesis, elimination of extraframework titanium, and characterizations . J. Phys. Chem. B 105 : 2897 – 2905 .
- Zhang , S. , Jin , S. , Tao , G. et al. ( 2017 ). The evolution of titanium species in boron-containing Ti-MWW zeolite during post-treatment revealed by UV resonance Raman spectroscopy . Microporous Mesoporous Mater. 253 : 183 – 190 .
- Jin , Y. , Asaoka , S. , Zhang , S. et al. ( 2013 ). Reexamination on transition-metal substituted MFI zeolites for catalytic conversion of methanol into light olefins . Fuel Process. Technol. 115 : 34 – 41 .
- Zhou , X. , Liu , Y. , Meng , X. et al. ( 2013 ). Synthesis and catalytic cracking performance of Fe/Ti-ZSM-5 zeolite from attapulgite mineral . Chinese J. Catal. 34 : 1504 – 1512 .
- Schoonheydt , R.A. ( 1989 ). Combined ESR-DRS spectroscopies of transition metal ions and metal ion clusters in zeolites . J. Phys. Chem. Solids 50 : 523 – 539 .
- Scarano , D. , Zecchina , A. , Bordiga , S. et al. ( 1993 ). Fourier-transform infrared and Raman spectra of pure and Al-, B-, Ti- and Fe-substituted silicalites: stretching-mode region . J. Chem. Soc. Faraday Trans. 89 : 4123 – 4130 .
- Fan , F. , Feng , Z. , and Li , C. ( 2010 ). UV Raman spectroscopic studies on active sites and synthesis mechanisms of transition metal-containing microporous and mesoporous materials . Acc. Chem. Res. 43 : 378 – 387 .
-
Tavernier , S.D.
and
Schoonheydt , R.A.
(
1991
).
Coordination of Cu
2+
in synthetic mordenites
.
Zeolites
11
:
155
–
163
.
10.1016/0144-2449(91)80410-2 Google Scholar
- Groothaert , M.H. , van Bokhoven , J.A. , Battiston , A.A. et al. ( 2003 ). Bis(μ-oxo)dicopper in Cu-ZSM-5 and its role in the decomposition of NO: a combined in situ XAFS, UV–Vis–near-IR, and kinetic study . J. Am. Chem. Soc. 125 : 7629 – 7640 .
- Smeets , P.J. , Groothaert , M.H. , and Schoonheydt , R.A. ( 2005 ). Cu based zeolites: a UV–vis study of the active site in the selective methane oxidation at low temperatures . Catal. Today 110 : 303 – 309 .
- Zholobenko , V. , Freitas , C. , Jendrlin , M. et al. ( 2020 ). Probing the acid sites of zeolites with pyridine: quantitative AGIR measurements of the molar absorption coefficients . J. Catal. 385 : 52 – 60 .
- Najmi , S. , So , J. , Stavitski , E. et al. ( 2021 ). In-situ IR spectroscopy study of reactions of C3 oxygenates on heteroatom (Sn, Mo, and W) doped BEA zeolites and the effect of Co-adsorbed water . ChemCatChem 13 : 445 – 458 .
-
Hadjiivanov , K.
(
2014
).
Advances in Catalysis
, vol.
57
(ed.
F.C. Jentoft
),
99
–
318
.
Academic Press
.
10.1016/B978-0-12-800127-1.00002-3 Google Scholar
- Bellmann , A. , Rautenberg , C. , Bentrup , U. , and Brückner , A. ( 2020 ). Determining the location of Co 2+ in zeolites by UV-vis diffuse reflection spectroscopy: a critical view . Catalysts 10 : 123 .
- Ricchiardi , G. , Damin , A. , Bordiga , S. et al. ( 2001 ). Vibrational structure of titanium silicate catalysts. A spectroscopic and theoretical study . J. Am. Chem. Soc. 123 : 11409 – 11419 .
- Fan , F. , Sun , K. , Feng , Z. et al. ( 2009 ). From molecular fragments to crystals: a UV Raman spectroscopic study on the mechanism of Fe-ZSM-5 synthesis . Chem. Eur. J. 15 : 3268 – 3276 .
- Li , Y. , Feng , Z. , Lian , Y. et al. ( 2005 ). Direct synthesis of highly ordered Fe-SBA-15 mesoporous materials under weak acidic conditions . Microporous Mesoporous Mater. 84 : 41 – 49 .
- Zhang , W.-H. , Lu , J. , Han , B. et al. ( 2002 ). Direct synthesis and characterization of titanium-substituted mesoporous molecular sieve SBA-15 . Chem. Mater. 14 : 3413 – 3421 .
- Hartmann , M. and Kevan , L. ( 1999 ). Transition-metal ions in aluminophosphate and silicoaluminophosphate molecular sieves: location, interaction with adsorbates and catalytic properties . Chem. Rev. 99 : 635 – 664 .
-
Li , C.
,
Xiong , G.
,
Xin , Q.
et al. (
1999
).
UV resonance Raman spectroscopic identification of titanium atoms in the framework of TS-1 zeolite
.
Angew. Chem. Int. Ed.
38
:
2220
–
2222
.
10.1002/(SICI)1521-3773(19990802)38:15<2220::AID-ANIE2220>3.0.CO;2-G CAS PubMed Web of Science® Google Scholar
- Guzman , J. and Gates , B.C. ( 2003 ). Supported molecular catalysts: metal complexes and clusters on oxides and zeolites . Dalton Trans. 3303 – 3318 .
- Fierro-Gonzalez , J.C. , Kuba , S. , Hao , Y. , and Gates , B.C. ( 2006 ). Oxide- and zeolite-supported molecular metal complexes and clusters: physical characterization and determination of structure, bonding, and metal oxidation state . J. Phys. Chem. B 110 : 13326 – 13351 .
- Wachs , I.E. ( 1996 ). Raman and IR studies of surface metal oxide species on oxide supports: supported metal oxide catalysts . Catal. Today 27 : 437 – 455 .
-
Stair , P. C.
(
2007
). In
Advances in Catalysis
;
B. C. Gates
,
H. Knözinger
, eds.;
Academic Press
.
51
:
75
–
98
.
10.1016/S0360-0564(06)51002-8 Google Scholar
- Kim , H. , Kosuda , K.M. , Van Duyne , R.P. , and Stair , P.C. ( 2010 ). Resonance Raman and surface- and tip-enhanced Raman spectroscopy methods to study solid catalysts and heterogeneous catalytic reactions . Chem. Soc. Rev. 39 : 4820 – 4844 .
- Langer , J. , Jimenez de Aberasturi , D. , Aizpurua , J. et al. ( 2020 ). Present and future of surface-enhanced Raman scattering . ACS Nano 14 : 28 – 117 .
- Baker , G.A. and Moore , D.S. ( 2005 ). Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis . Anal. Bioanal. Chem. 382 : 1751 – 1770 .
- Li , W. , Gibbs , G.V. , and Oyama , S.T. ( 1998 ). Mechanism of ozone decomposition on a manganese oxide catalyst. 1. In situ Raman spectroscopy and ab initio molecular orbital calculations . J. Am. Chem. Soc. 120 : 9041 – 9046 .
- Lee , E.L. and Wachs , I.E. ( 2008 ). In situ Raman spectroscopy of SiO 2 -supported transition metal oxide catalysts: an isotopic 18 O− 16 O exchange study . J. Phys. Chem. C 112 : 6487 – 6498 .
- Li , W. , Meitzner , G.D. , Borry , R.W. , and Iglesia , E. ( 2000 ). Raman and X-ray absorption studies of Mo species in Mo/H-ZSM5 catalysts for non-oxidative CH 4 reactions . J. Catal. 191 : 373 – 383 .
- Gao , J. , Zheng , Y. , Jehng , J.-M. et al. ( 2015 ). Identification of molybdenum oxide nanostructures on zeolites for natural gas conversion . Science 348 : 686 – 690 .
- Hammond , C. , Hermans , I. , and Dimitratos , N. ( 2015 ). Biomimetic oxidation with Fe-ZSM-5 and H 2 O 2 ? Identification of an active, extra-framework binuclear core and an Fe III -OOH intermediate with resonance-enhanced Raman spectroscopy . ChemCatChem 7 : 434 – 440 .
- Woertink , J.S. , Smeets , P.J. , Groothaert , M.H. et al. ( 2009 ). A [Cu 2 O] 2+ core in Cu-ZSM-5, the active site in the oxidation of methane to methanol . Proc. Natl. Acad. Sci. U. S. A. 106 : 18908 – 18913 .
- Henson , M.J. , Mukherjee , P. , Root , D.E. et al. ( 1999 ). Spectroscopic and electronic structural studies of the Cu(III) 2 bis-μ-oxo core and its relation to the side-on peroxo-bridged dimer . J. Am. Chem. Soc. 121 : 10332 – 10345 .
- Himes , R.A. and Karlin , K.D. ( 2009 ). A new copper-oxo player in methane oxidation . Proc. Natl. Acad. Sci. U. S. A. 106 : 18877 – 18878 .
- Vanelderen , P. , Snyder , B.E.R. , Tsai , M.-L. et al. ( 2015 ). Spectroscopic definition of the copper active sites in mordenite: selective methane oxidation . J. Am. Chem. Soc. 137 : 6383 – 6392 .
- Rhoda , H.M. , Plessers , D. , Heyer , A.J. et al. ( 2021 ). Spectroscopic definition of a highly reactive site in Cu-CHA for selective methane oxidation: tuning a mono-μ-oxo dicopper(II) active site for reactivity . J. Am. Chem. Soc. 143 : 7531 – 7540 .
- Czernuszewicz , R.S. , Sheats , J.E. , and Spiro , T.G. ( 1987 ). Resonance Raman spectra and excitation profile for bis(acetato)bis(hydrotripyrazolylborato)oxodiiron, a hemerythrin analog . Inorg. Chem. 26 : 2063 – 2067 .
- Duer , M.J. ( 2008 ). Solid State NMR Spectroscopy: Principles and Applications . John Wiley & Sons .
-
Jakobsen , H.J.
(
2007
).
High speed MAS of half-integer quadrupolar nuclei in solids
.
eMagRes
https://doi.org/10.1002/9780470034590.emrstm0212
.
10.1002/9780470034590.emrstm0212 Google Scholar
- Ashbrook , S.E. and Sneddon , S. ( 2014 ). New methods and applications in solid-state NMR spectroscopy of quadrupolar nuclei . J. Am. Chem. Soc. 136 : 15440 – 15456 .
- Klinowski , J. ( 2004 ). New Techniques in Solid-State NMR . Springer .
- Brouwer , D.H. , Darton , R.J. , Morris , R.E. , and Levitt , M.H. ( 2005 ). A solid-state NMR method for solution of zeolite crystal structures . J. Am. Chem. Soc. 127 : 10365 – 10370 .
- Bakhmutov , V.I. ( 2011 ). Strategies for solid-state NMR studies of materials: from diamagnetic to paramagnetic porous solids . Chem. Rev. 111 : 530 – 562 .
- Li , S. , Lafon , O. , Wang , W. et al. ( 2020 ). Recent advances of solid-state NMR spectroscopy for microporous materials . Adv. Mater. 32 : 2002879 .
- Xu , J. , Wang , Q. , and Deng , F. ( 2019 ). Metal active sites and their catalytic functions in zeolites: insights from solid-state NMR spectroscopy . Acc. Chem. Res. 52 : 2179 – 2189 .
-
Xu , J.
,
Wang , Q.
,
Li , S.
, and
Deng , F.
(
2019
).
Solid-State NMR in Zeolite Catalysis
, vol.
103
.
Springer
.
10.1007/978-981-13-6967-4 Google Scholar
- Qi , G. , Wang , Q. , Xu , J. , and Deng , F. ( 2021 ). Solid-state NMR studies of internuclear correlations for characterizing catalytic materials . Chem. Soc. Rev. 50 : 8382 – 8399 .
- Fernandez , C. and Pruski , M. ( 2012 ). Probing quadrupolar nuclei by solid-state NMR spectroscopy: recent advances . Top. Curr. Chem. 306 : 119 – 188 .
- Siegel , R. , Nakashima , T.T. , and Wasylishen , R.E. ( 2004 ). Signal enhancement of NMR spectra of half-integer quadrupolar nuclei in solids using hyperbolic secant pulses . Chem. Phys. Lett. 388 : 441 – 445 .
- Ono , Y. and Kanae , K. ( 1991 ). Transformation of butanes over ZSM-5 zeolites. Part 2.—Formation of aromatic hydrocarbons over Zn-ZSM-5 and Ga-ZSM-5 . J. Chem. Soc. Faraday Trans. 87 : 669 – 675 .
- Wang , L. , Tao , L. , Xie , M. et al. ( 1993 ). Dehydrogenation and aromatization of methane under non-oxidizing conditions . Catal. Lett. 21 : 35 – 41 .
- Qi , G. , Wang , Q. , Xu , J. et al. ( 2016 ). Synergic effect of active sites in zinc-modified ZSM-5 zeolites as revealed by high-field solid-state NMR spectroscopy . Angew. Chem. Int. Ed. 55 : 15826 – 15830 .
- Gao , P. , Wang , Q. , Xu , J. et al. ( 2018 ). Brønsted/Lewis acid synergy in methanol-to-aromatics conversion on Ga-modified ZSM-5 zeolites, as studied by solid-state NMR spectroscopy . ACS Catal. 8 : 69 – 74 .
- Gao , W. , Qi , G. , Wang , Q. et al. ( 2021 ). Dual active sites on molybdenum/ZSM-5 catalyst for methane dehydroaromatization: insights from solid-state NMR spectroscopy . Angew. Chem. Int. Ed. 60 : 10709 – 10715 .
- Ennaert , T. , Van Aelst , J. , Dijkmans , J. et al. ( 2016 ). Potential and challenges of zeolite chemistry in the catalytic conversion of biomass . Chem. Soc. Rev. 45 : 584 – 611 .
- Dapsens , P.Y. and Mondelli , C. ( 2015 ). Design of Lewis-acid centres in zeolitic matrices for the conversion of renewables . Chem. Soc. Rev. 44 : 7025 – 7043 .
- Kubička , D. , Kubičková , I. , and Čejka , J. ( 2013 ). Application of molecular sieves in transformations of biomass and biomass-derived feedstocks . Catal. Rev. 55 : 1 – 78 .
- Moliner , M. , Román-Leshkov , Y. , and Davis , M.E. ( 2010 ). Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water . Proc. Natl. Acad. Sci. U. S. A. 107 : 6164 – 6168 .
- Román-Leshkov , Y. , Moliner , M. , Labinger , J.A. , and Davis , M.E. ( 2010 ). Mechanism of glucose isomerization using a solid Lewis acid catalyst in water . Angew. Chem. Int. Ed. 49 : 8954 – 8957 .
- Bermejo-Deval , R. , Assary , R.S. , Nikolla , E. et al. ( 2012 ). Metalloenzyme-like catalyzed isomerizations of sugars by Lewis acid zeolites . Proc. Natl. Acad. Sci. U. S. A. 109 : 9727 – 9732 .
- Nikolla , E. , Roman-Leshkov , Y. , Moliner , M. , and Davis , M.E. ( 2011 ). “One-pot” synthesis of 5-(hydroxymethyl)furfural from carbohydrates using tin-beta zeolite . ACS Catal. 1 : 408 – 410 .
- Bare , S.R. , Kelly , S.D. , Sinkler , W. et al. ( 2005 ). Uniform catalytic site in Sn-beta-zeolite determined using X-ray absorption fine structure . J. Am. Chem. Soc. 127 : 12924 – 12932 .
- Boronat , M. , Concepción , P. , Corma , A. et al. ( 2005 ). Determination of the catalytically active oxidation Lewis acid sites in Sn-beta zeolites, and their optimisation by the combination of theoretical and experimental studies . J. Catal. 234 : 111 – 118 .
- Qi , G. , Chu , Y. , Wang , Q. et al. ( 2020 ). Gem-diol-type intermediate in the activation of a ketone on Sn-β zeolite as studied by solid-state NMR spectroscopy . Angew. Chem. Int. Ed. 59 : 19532 – 19538 .
- Kolyagin , Y.G. , Yakimov , A.V. , Tolborg , S. et al. ( 2016 ). Application of 119 Sn CPMG MAS NMR for fast characterization of Sn sites in zeolites with natural 119 Sn isotope abundance . J. Phys. Chem. Lett. 7 : 1249 – 1253 .
- Padovan , D. , Botti , L. , and Hammond , C. ( 2018 ). Active site hydration governs the stability of Sn-Beta during continuous glucose conversion . ACS Catal. 8 : 7131 – 7140 .
- Gunther , W.R. , Michaelis , V.K. , Caporini , M.A. et al. ( 2014 ). Dynamic nuclear polarization NMR enables the analysis of Sn-Beta zeolite prepared with natural abundance Sn-119 precursors . J. Am. Chem. Soc. 136 : 6219 – 6222 .
- Wolf , P. , Valla , M. , Rossini , A.J. et al. ( 2014 ). NMR signatures of the active sites in Sn-beta zeolite . Angew. Chem. Int. Ed. 53 : 10179 – 10183 .
- Wolf , P. , Liao , W.-C. , Ong , T.-C. et al. ( 2016 ). Identifying Sn site heterogeneities prevalent among Sn-Beta zeolites . Helv. Chim. Acta 99 : 916 – 927 .
- Wolf , P. , Valla , M. , Núñez-Zarur , F. et al. ( 2016 ). Correlating synthetic methods, morphology, atomic-level structure, and catalytic activity of Sn-β catalysts . ACS Catal. 6 : 4047 – 4063 .
- Bermejo-Deval , R. , Gounder , R. , and Davis , M.E. ( 2012 ). Framework and extraframework tin sites in zeolite beta react glucose differently . ACS Catal. 2 : 2705 – 2713 .
- Roy , S. , Bakhmutsky , K. , Mahmoud , E. et al. ( 2013 ). Probing Lewis acid sites in Sn-Beta zeolite . ACS Catal. 3 : 573 – 580 .
- Tang , B. , Dai , W. , Wu , G. et al. ( 2014 ). Improved postsynthesis strategy to Sn-Beta zeolites as Lewis acid catalysts for the ring-opening hydration of epoxides . ACS Catal. 4 : 2801 – 2810 .
- Wang , L. , Zhang , J. , Wang , X. et al. ( 2014 ). Creation of Brønsted acid sites on Sn-based solid catalysts for the conversion of biomass . J. Mater. Chem. A 2 : 3725 – 3729 .
- Dijkmans , J. , Dusselier , M. , Gabriëls , D. et al. ( 2015 ). Cooperative catalysis for multistep biomass conversion with Sn/Al Beta zeolite . ACS Catal. 5 : 928 – 940 .
- Qi , G. , Wang , Q. , Xu , J. et al. ( 2018 ). Direct observation of tin sites and their reversible interconversion in zeolites by solid-state NMR spectroscopy . Commun. Chem. 1 : 22 .
- Rothwell , W.P. , Shen , W.X. , and Lunsford , J.H. ( 1984 ). Solid-state phosphorus-31 NMR of a chemisorbed phosphonium ion in HY zeolite: observation of proton-phosphorus-31 coupling in the solid-state . J. Am. Chem. Soc. 106 : 2452 – 2453 .
- Lunsford , J.H. , Rothwell , W.P. , and Shen , W. ( 1985 ). Acid sites in zeolite Y: a solid-state NMR and infrared study using trimethylphosphine as a probe molecule . J. Am. Chem. Soc. 107 : 1540 – 1547 .
- Rakiewicz , E.F. , Peters , A.W. , Wormsbecher , R.F. et al. ( 1998 ). Characterization of acid sites in zeolitic and other inorganic systems using solid-state 31 P NMR of the probe molecule trimethylphosphine oxide . J. Phys. Chem. B 102 : 2890 – 2896 .
- Ganapathy , S. , Gore , K.U. , Kumar , R. , and Amoureux , J.P. ( 2003 ). Multinuclear (Al-27, Si-29, Ti-47,Ti-49) solid-state NMR of titanium substituted zeolite USY . Solid State Nucl. Magn. Reson. 24 : 184 – 195 .
- Zhuang , J. , Yan , Z. , Liu , X. et al. ( 2002 ). NMR study on the acidity of TS-1 zeolite . Catal. Lett. 83 : 87 – 91 .
- Chen , L. , Wang , Q. , Hu , B. et al. ( 2010 ). Measurement of hetero-nuclear distances using a symmetry-based pulse sequence in solid-state NMR . Phys. Chem. Chem. Phys. 12 : 9395 – 9405 .
- Seo , Y. , Cho , K. , Jung , Y. , and Ryoo , R. ( 2013 ). Characterization of the surface acidity of MFI zeolite nanosheets by 31P NMR of adsorbed phosphine oxides and catalytic cracking of decalin . ACS Catal. 3 : 713 – 720 .
- Zheng , A. , Huang , S.-J. , Liu , S.-B. , and Deng , F. ( 2011 ). Acid properties of solid acid catalysts characterized by solid-state 31 P NMR of adsorbed phosphorous probe molecules . Phys. Chem. Chem. Phys. 13 : 14889 – 14901 .
- Lewis , J.D. , Ha , M. , Luo , H. et al. ( 2018 ). Distinguishing active site identity in Sn-Beta zeolites using P-31 MAS NMR of adsorbed trimethylphosphine oxide . ACS Catal. 8 : 3076 – 3086 .
- Yang , G. , Pidko , E.A. , and Hensen , E.J. ( 2013 ). The mechanism of glucose isomerization to fructose over Sn-BEA zeolite: a periodic density functional theory study . ChemSusChem 6 : 1688 – 1696 .
- Levitt , M.H. ( 2013 ). Spin Dynamics: Basics of Nuclear Magnetic Resonance . John Wiley & Sons .
- Li , S. , Zheng , A. , Su , Y. et al. ( 2007 ). Brønsted/Lewis acid synergy in dealuminated HY zeolite: a combined solid-state NMR and theoretical calculation study . J. Am. Chem. Soc. 129 : 11161 – 11171 .
- Yu , Z. , Zheng , A. , Wang , Q. et al. ( 2010 ). Insights into the dealumination of zeolite HY revealed by sensitivity-enhanced 27 Al DQ-MAS NMR spectroscopy at high field . Angew. Chem. Int. Ed. 49 : 8657 – 8661 .
- Gao , P. , Xu , J. , Qi , G. et al. ( 2018 ). A mechanistic study of methanol-to-aromatics reaction over Ga-modified ZSM-5 zeolites: understanding the dehydrogenation process . ACS Catal. 8 : 9809 – 9820 .
-
Haw , J.F.
,
Goguen , P.W.
,
Xu , T.
et al. (
1998
).
In situ NMR investigations of heterogeneous catalysis with samples prepared under standard reaction conditions
.
Angew. Chem. Int. Ed.
37
:
948
–
949
.
10.1002/(SICI)1521-3773(19980420)37:7<948::AID-ANIE948>3.0.CO;2-L CAS PubMed Web of Science® Google Scholar
-
Hunger , M.
and
Weitkamp , J.
(
2001
).
In situ IR, NMR, EPR, and UV/Vis spectroscopy: tools for new insight into the mechanisms of heterogeneous catalysis
.
Angew. Chem. Int. Ed.
40
:
2954
–
2971
.
10.1002/1521-3773(20010817)40:16<2954::AID-ANIE2954>3.0.CO;2-# CAS PubMed Web of Science® Google Scholar
- Ivanova , I.I. and Kolyagin , Y.G. ( 2010 ). Impact of in situ MAS NMR techniques to the understanding of the mechanisms of zeolite catalyzed reactions . Chem. Soc. Rev. 39 : 5018 – 5050 .
- Zhang , W. , Xu , S. , Han , X. , and Bao , X. ( 2012 ). In situ solid-state NMR for heterogeneous catalysis: a joint experimental and theoretical approach . Chem. Soc. Rev. 41 : 192 – 210 .
- Anderson , M.W. and Klinowski , J. ( 1989 ). Direct observation of shape selectivity in zeolite ZSM-5 by magic-angle-spinning NMR . Nature 339 : 200 – 203 .
- Carpenter , T.A. , Klinowski , J. , Tennakoon , D.T.B. et al. ( 1986 ). Sealed capsules for convenient acquisition of variable-temperature controlled-atmosphere magic-angle-spinning NMR-spectra of solids . J. Magn. Reson. 68 : 561 – 563 .
- Qi , L. , Alamillo , R. , Elliott , W.A. et al. ( 2017 ). Operando solid-state NMR observation of solvent-mediated adsorption-reaction of carbohydrates in zeolites . ACS Catal. 7 : 3489 – 3500 .
- Lin , M. , Xia , C. , Zhu , B. et al. ( 2016 ). Green and efficient epoxidation of propylene with hydrogen peroxide (HPPO process) catalyzed by hollow TS-1 zeolite: a 1.0 kt/a pilot-scale study . Chem. Eng. J. 295 : 370 – 375 .
- Gamba , A. , Tabacchi , G. , and Fois , E. ( 2009 ). TS-1 from first principles . J. Phys. Chem. A 113 : 15006 – 15015 .
- Gordon , C.P. , Engler , H. , Tragl , A.S. et al. ( 2020 ). Efficient epoxidation over dinuclear sites in titanium silicalite-1 . Nature 586 : 708 – 713 .
- Goguen , P.W. , Xu , T. , Barich , D.H. et al. ( 1998 ). Pulse-quench catalytic reactor studies reveal a carbon-pool mechanism in methanol-to-gasoline chemistry on zeolite HZSM-5 . J. Am. Chem. Soc. 120 : 2650 – 2651 .
- Haw , J.F. ( 1999 ). In situ NMR of heterogeneous catalysis: new methods and opportunities . Top. Catal. 8 : 81 – 86 .
- Wang , C. , Chu , Y. , Zheng , A. et al. ( 2014 ). Frontispiece: new insight into the hydrocarbon-pool chemistry of the methanol-to-olefins conversion over zeolite H-ZSM-5 from GC-MS, solid-state NMR spectroscopy, and DFT calculations . Chem. Eur. J. 20 : 12432 – 12443 .
- Wang , C. , Yi , X. , Xu , J. et al. ( 2015 ). Experimental evidence on the formation of ethene through carbocations in methanol conversion over H-ZSM-5 zeolite . Chem. Eur. J. 21 : 12061 – 12068 .
- Hunger , M. , Seiler , M. , and Horvath , T. ( 1999 ). A technique for simultaneous in situ MAS NMR and on-line gas chromatographic studies of hydrocarbon conversions on solid catalysts under flow conditions . Catal. Lett. 57 : 199 – 204 .
- Hunger , M. ( 2008 ). In situ flow MAS NMR spectroscopy: state of the art and applications in heterogeneous catalysis . Prog. Nucl. Magn. Reson. Spectrosc. 53 : 105 – 127 .
- Wang , W. , Seiler , M. , Ivanova , I.I. et al. ( 2002 ). Formation and decomposition of N, N, N-trimethylanilinium cations on zeolite H−Y investigated by in situ stopped-flow MAS NMR spectroscopy . J. Am. Chem. Soc. 124 : 7548 – 7554 .
- Seiler , M. , Wang , W. , Buchholz , A. , and Hunger , M. ( 2003 ). Direct evidence for a catalytically active role of the hydrocarbon pool formed on zeolite H-ZSM-5 during the methanol-to-olefin conversion . Catal. Lett. 88 : 187 – 191 .
- Zhou , X. , Wang , C. , Chu , Y. et al. ( 2019 ). Observation of an oxonium ion intermediate in ethanol dehydration to ethene on zeolite . Nat. Commun. 10 : 1961 .