Titanosilicate-Based Alkene Epoxidation Catalysis
Changjiu Xia
SINOPEC, Research Institute of Petroleum Processing, State Key Laboratory of Catalytic Materials and Reaction Engineering, No.18 Xueyuan road, Beijing, 100083 China
Search for more papers by this authorXiang Feng
China University of Petroleum, State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, Department of Chemical Engineering, No. 66 West Changjiang Road, Qingdao, 266580 China
Search for more papers by this authorChangjiu Xia
SINOPEC, Research Institute of Petroleum Processing, State Key Laboratory of Catalytic Materials and Reaction Engineering, No.18 Xueyuan road, Beijing, 100083 China
Search for more papers by this authorXiang Feng
China University of Petroleum, State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, Department of Chemical Engineering, No. 66 West Changjiang Road, Qingdao, 266580 China
Search for more papers by this authorPeng Wu
East China Normal University, North Zhongshan Rd. No. 3663, Shanghai, 200062 China
Search for more papers by this authorHao Xu
East China Normal University, North Zhongshan Rd. No. 3663, Shanghai, 200062 China
Search for more papers by this authorSummary
Epoxides (e.g. ethylene oxide, propylene oxide, epichlorohydrin) are highly useful intermediates in the production of many chemicals, pharmaceuticals, perfumes, and polymers. The conversion of alkene into epoxides over titanosilicate zeolites is of growing importance for academic and industrial scientists. Herein, we describe recent developments in epoxidation of olefins focusing on the use of Ti-substituted zeolites catalyst. We show how the surface chemistry around the Ti sites (e.g. dispersion of Ti, coordination forms of Ti) affect the activity, selectivity, and stability in the epoxidation reaction. Finally, the industrial epoxidation of propene with hydrogen peroxide (HPPO, hydrogen peroxide propene oxide) techniques and processes is further discussed.
References
- Nijhuis , T.A. , Makkee , M. , Moulijn , J.A. , and Weckhuysen , B.M. ( 2006 ). The production of propene oxide: catalytic processes and recent developments . Ind. Eng. Chem. Res. 45 : 3447 – 3459 .
-
Rebsdat , S.
and
Mayer , D.
(
2000
).
Ethylene glycol
. In:
Ullmann's Encyclopedia of Industrial Chemistry
, vol.
33
,
531
–
546
.
Wiley-VCH Verlag GmbH & Co.
10.1002/14356007.a10_101 Google Scholar
- Kwon , O. , Ayla , E.Z. , Potts , D.S. , and Flaherty , D.W. ( 2023 ). Effects of solvent–pore interaction on rates and barriers for vapor phase alkene epoxidation with gaseous H 2 O 2 in Ti-BEA catalysts . ACS Catal. 13 : 6430 – 6444 .
- Neri , C. , Anfossi , B. , Esposito , A. , and Buonomo , F. ( 1989 ). Process for the Epoxidation of Olefinic Compounds . Google Patents .
-
Weissermel , K.
and
Arpe , H.-J.
(
2008
).
Industrial Organic Chemistry
.
John Wiley & Sons
.
10.1002/9783527619191 Google Scholar
-
Romano , U.
and
Ricci , M.
(
2013
).
Industrial applications
. In:
Liquid Phase Oxidation via Heterogeneous Catalysis: Organic Synthesis and Industrial Applications
,
451
–
506
.
Wiley-VCH Verlag GmbH & Co.
10.1002/9781118356760.ch10 Google Scholar
- Khatib , S.J. and Oyama , S. ( 2015 ). Direct oxidation of propylene to propylene oxide with molecular oxygen: a review . Catal. Rev. 57 : 306 – 344 .
- Cavani , F. and Teles , J.H. ( 2009 ). Sustainability in catalytic oxidation: an alternative approach or a structural evolution? ChemSusChem 2 : 508 – 534 .
- Thiele , G. and Roland , E. ( 1997 ). Propylene epoxidation with hydrogen peroxide and titanium silicalite catalyst: activity, deactivation and regeneration of the catalyst . J. Mol. Catal. A Chem. 117 : 351 – 356 .
- Rebsdat , S. and Mayer , D. ( 2000 ). Ethylene oxide . In: Ullmann's Encyclopedia of Industrial Chemistry . Wiley-VCH Verlag GmbH & Co.
- Jankowiak , J.T. and Barteau , M.A. ( 2005 ). Ethylene epoxidation over silver and copper-silver bimetallic catalysts: II. Cs and Cl promotion . J. Catal. 236 : 379 – 386 .
- Christopher , P. and Linic , S. ( 2008 ). Engineering selectivity in heterogeneous catalysis: Ag nanowires as selective ethylene epoxidation catalysts . J. Am. Chem. Soc. 130 : 11264 – 11265 .
- Montemore , M.M. , van Spronsen , M.A. , Madix , R.J. , and Friend , C.M. ( 2017 ). O 2 activation by metal surfaces: implications for bonding and reactivity on heterogeneous catalysts . Chem. Rev. 118 : 2816 – 2862 .
- Özbek , M. and Van Santen , R. ( 2013 ). The mechanism of ethylene epoxidation catalysis . Catal. Lett. 143 : 131 – 141 .
- Carbonio , E.A. , Rocha , T.C. , Klyushin , A.Y. et al. ( 2018 ). Are multiple oxygen species selective in ethylene epoxidation on silver? Chem. Sci. 9 : 990 – 998 .
- Liu , X. , Wang , X. , Guo , X. , and Li , G. ( 2004 ). Effect of solvent on the propylene epoxidation over TS-1 catalyst . Catal. Today 93 : 505 – 509 .
- Leow , W.R. , Lum , Y. , Ozden , A. et al. ( 2020 ). Chloride-mediated selective electrosynthesis of ethylene and propylene oxides at high current density . Science 368 : 1228 – 1233 .
- Teržan , J. , Huš , M. , Likozar , B. , and Djinović , P. ( 2020 ). Propylene epoxidation using molecular oxygen over copper- and silver-based catalysts: a review . ACS Catal. 10 : 13415 – 13436 .
- Torres , D. , Lopez , N. , Illas , F. , and Lambert , R.M. ( 2007 ). Low-basicity oxygen atoms: a key in the search for propylene epoxidation catalysts . Angew. Chem. Int. Ed. 46 : 2055 – 2058 .
- Pell , M. and Korchak , E.I. ( 1969 ). Epoxidation Using Ethylbenzene Hydroperoxide with Alkali or Adsorbent Treatment of Recycle Ethylbenzene . Google Patents .
- Lewandowski , G. and Milchert , E. ( 2001 ). Parameters of epoxidation of cyclohexene by tert-butyl hydroperoxide . Ind. Eng. Chem. Res. 40 : 2402 – 2408 .
- Seo , T. and Tsuji , J. ( 2003 ). Process for Producing Propylene Oxide . Google Patents .
- Almena , A. and Martín , M. ( 2016 ). Technoeconomic analysis of the production of epichlorohydrin from glycerol . Ind. Eng. Chem. Res. 55 : 3226 – 3238 .
- Wang , M. , Zhou , J. , Mao , G. , and Zheng , X. ( 2012 ). Synthesis of TS-1 from an inorganic reactant system and its catalytic properties for allyl chloride epoxidation . Ind. Eng. Chem. Res. 51 : 12730 – 12738 .
- Wang , S.-J. , Wong , D.S.-H. , Lim , I.J.Q. et al. ( 2018 ). Design and control of a novel plant-wide process for epichlorohydrin synthesis by reacting allyl chloride with hydrogen peroxide . Ind. Eng. Chem. Res. 57 : 6926 – 6936 .
- Wang , Q. , Mi , Z. , Wang , Y. , and Wang , L. ( 2005 ). Epoxidation of allyl choride with molecular oxygen and 2-ethyl-anthrahydroquinone catalyzed by TS-1 . J. Mol. Catal. A Chem. 229 : 71 – 75 .
- Notari , B. ( 1988 ). Synthesis and catalytic properties of titanium containing zeolites . In: Studies in Surface Science and Catalysis , vol. 37 , 413 – 425 . Elsevier .
- Wang , X. , Zhang , X. , Wang , Y. et al. ( 2011 ). Preparation and performance of TS-1/SiO 2 egg-shell catalysts . Chem. Eng. J. 175 : 408 – 416 .
- Dong , J. , Zhu , H. , Xiang , Y. et al. ( 2016 ). Toward a unified identification of Ti location in the MFI framework of high-Ti-loaded TS-1: combined EXAFS, XANES, and DFT study . J. Phys. Chem. C 120 : 20114 – 20124 .
- Wu , L. , Deng , X. , Zhao , S. et al. ( 2016 ). Synthesis of a highly active oxidation catalyst with improved distribution of titanium coordination states . Chem. Commun. 52 : 8679 – 8682 .
- Li , T. , Zuo , Y. , Guo , Y. et al. ( 2020 ). Highly stable TS-1 extrudates for 1-butene epoxidation through improving the heat conductivity . Catal. Sci. Technol. 10 : 6152 – 6160 .
- Russo , V. , Tesser , R. , Santacesaria , E. , and Di Serio , M. ( 2013 ). Chemical and technical aspects of propene oxide production via hydrogen peroxide (HPPO process) . Ind. Eng. Chem. Res. 52 : 1168 – 1178 .
- Li , W. , Wu , G. , Hu , W. et al. ( 2022 ). Direct propylene epoxidation with molecular oxygen over cobalt-containing zeolites . J. Am. Chem. Soc. 144 : 4260 – 4268 .
- Corma , A. and Garcia , H. ( 2003 ). Lewis acids: from conventional homogeneous to green homogeneous and heterogeneous catalysis . Chem. Rev. 103 : 4307 – 4366 .
- Sinha , A. , Seelan , S. , Okumura , M. et al. ( 2005 ). Three-dimensional mesoporous titanosilicates prepared by modified sol-gel method: ideal gold catalyst supports for enhanced propene epoxidation . J. Phys. Chem. B 109 : 3956 – 3965 .
- Song , W. , Zuo , Y. , Xiong , G. et al. ( 2014 ). Transformation of SiO 2 in titanium silicalite-1/SiO 2 extrudates during tetrapropylammonium hydroxide treatment and improvement of catalytic properties for propylene epoxidation . Chem. Eng. J. 253 : 464 – 471 .
- Clerici , M. , Bellussi , G. , and Romano , U. ( 1991 ). Synthesis of propylene oxide from propylene and hydrogen peroxide catalyzed by titanium silicalite . J. Catal. 129 : 159 – 167 .
- Nguyen , H.K. , Sankar , G. , and Catlow , R.A. ( 2017 ). Reactivities study of titanium sites in titanosilicate frameworks by in situ XANES . J. Porous. Mater. 24 : 421 – 428 .
- Xiong , G. , Cao , Y. , Guo , Z. et al. ( 2016 ). The roles of different titanium species in TS-1 zeolite in propylene epoxidation studied by in situ UV Raman spectroscopy . Phys. Chem. Chem. Phys. 18 : 190 – 196 .
- Xu , J. , Wang , Y. , Feng , W. et al. ( 2014 ). Effect of triethylamine treatment of titanium silicalite-1 on propylene epoxidation . Front. Chem. Sci. Eng. 8 : 478 – 487 .
- Bordiga , S. , Damin , A. , Bonino , F. et al. ( 2002 ). The structure of the peroxo species in the TS-1 catalyst as investigated by resonant Raman spectroscopy . Angew. Chem. Int. Ed. 41 : 4734 – 4737 .
- Ricchiardi , G. , Damin , A. , Bordiga , S. et al. ( 2001 ). Vibrational structure of titanium silicate catalysts. A spectroscopic and theoretical study . J. Am. Chem. Soc. 123 : 11409 – 11419 .
- Lin , W. and Frei , H. ( 2002 ). Photochemical and FT-IR probing of the active site of hydrogen peroxide in Ti silicalite sieve . J. Am. Chem. Soc. 124 : 9292 – 9298 .
- Gale , J.D. ( 2006 ). A periodic density functional study of the location of titanium within TS-1 . Solid State Sci. 8 : 234 – 240 .
- Wang , Y. , Lin , M. , and Tuel , A. ( 2007 ). Hollow TS-1 crystals formed via a dissolution–recrystallization process . Microporous Mesoporous Mater. 102 : 80 – 85 .
- Zhuang , J. , Yan , Z. , Liu , X. et al. ( 2002 ). NMR study on the acidity of TS-1 zeolite . Catal. Lett. 83 : 87 – 91 .
- Gordon , C.P. , Engler , H. , Tragl , A.S. et al. ( 2020 ). Efficient epoxidation over dinuclear sites in titanium silicalite-1 . Nature 586 : 708 – 713 .
- Bellussi , G. , Carati , A. , Clerici , M.G. et al. ( 1992 ). Reactions of titanium silicalite with protic molecules and hydrogen peroxide . J. Catal. 133 : 220 – 230 .
- Sinclair , P.E. and Catlow , C.R.A. ( 1999 ). Quantum chemical study of the mechanism of partial oxidation reactivity in titanosilicate catalysts: active site formation, oxygen transfer, and catalyst deactivation . J. Phys. Chem. B 103 : 1084 – 1095 .
- Romano , U. , Esposito , A. , Maspero , F. et al. ( 1990 ). Selective oxidation with Ti-silicalite . In: Studies in Surface Science and Catalysis , vol. 55 , 33 – 41 . Elsevier .
- Wu , L. , Zhao , S. , Lin , L. et al. ( 2016 ). In-depth understanding of acid catalysis of solvolysis of propene oxide over titanosilicates and titanosilicate/H 2 O 2 systems . J. Catal. 337 : 248 – 259 .
- Liu , X. , Liu , J. , Xia , Y. et al. ( 2019 ). Catalytic performance of TS-1 in oxidative cleavage of 1-alkenes with H 2 O 2 . Catal. Commun. 126 : 40 – 43 .
- Panyaburapa , W. , Nanok , T. , and Limtrakul , J. ( 2007 ). Epoxidation reaction of unsaturated hydrocarbons with H 2 O 2 over defect TS-1 investigated by ONIOM method: formation of active sites and reaction mechanisms . J. Phys. Chem. C 111 : 3433 – 3441 .
- Song , Z. , Yuan , J. , Cai , Z. et al. ( 2020 ). Engineering three-layer core-shell S-1/TS-1@dendritic-SiO 2 supported Au catalysts towards improved performance for propene epoxidation with H 2 and O 2 . Green Energy Environ. 5 : 473 – 483 .
- Clerici , M.G. and Ingallina , P. ( 1993 ). Epoxidation of lower olefins with hydrogen peroxide and titanium silicalite . J. Catal. 140 : 71 – 83 .
- Wang , L. , Liu , Y. , Xie , W. et al. ( 2007 ). Highly efficient and selective production of epichlorohydrin through epoxidation of allyl chloride with hydrogen peroxide over Ti-MWW catalysts . J. Catal. 246 : 205 – 214 .
- Ding , L. , Yin , J. , Tong , W. et al. ( 2021 ). Selective synthesis of epichlorohydrin via liquid-phase allyl chloride epoxidation over a modified Ti-MWW zeolite in a continuous slurry bed reactor . New J. Chem. 45 : 331 – 342 .
- Pandey , R.K. and Kumar , R. ( 2007 ). Eco-friendly synthesis of epichlorohydrin catalyzed by titanium silicate (TS-1) molecular sieve and hydrogen peroxide . Catal. Commun. 8 : 379 – 382 .
- Singh , G.S. , Mollet , K. , D'hooghe , M. , and De Kimpe , N. ( 2013 ). Epihalohydrins in organic synthesis . Chem. Rev. 113 : 1441 – 1498 .
- Heywood , D.L. and Phillips , B. ( 1958 ). The reaction of epichlorohydrin with secondary amines . J. Am. Chem. Soc. 80 : 1257 – 1259 .
- Lu , Y. , Wang , R. , Zhang , J. et al. ( 2015 ). Evaluation of an improved epichlorohydrin synthesis from dichloropropanol using a microchemical system . Chin. J. Chem. Eng. 23 : 1123 – 1130 .
- Peng , X. , Xia , C. , Lin , M. et al. ( 2017 ). Chlorohydrination of allyl chloride with HCl and H 2 O 2 catalyzed by hollow titanium silicate zeolite to produce dichloropropanol . Green Chem. 19 : 1221 – 1225 .
- Peng , X. , Xia , C. , Lin , M. et al. ( 2017 ). A safer and greener chlorohydrination of allyl chloride with H 2 O 2 and HCl over hollow titanium silicate zeolite . Appl. Catal. A Gen. 543 : 17 – 25 .
- Xia , C. , Peng , X. , Lin , M. et al. ( 2017 ). Understanding the pathways of improved chlorohydrination of allyl chloride with HCl and H 2 O 2 catalyzed by titanium-incorporated zeolites . Mol. Catal. 442 : 89 – 96 .
- Ghanta , M. , Fahey , D.R. , Busch , D.H. , and Subramaniam , B. ( 2013 ). Comparative economic and environmental assessments of H 2 O 2 -based and tertiary butyl hydroperoxide-based propylene oxide technologies . ACS Sustain. Chem. Eng. 1 : 268 – 277 .
- Bregante , D.T. , Tan , J.Z. , Schultz , R.L. et al. ( 2020 ). Catalytic consequences of oxidant, alkene, and pore structures on alkene epoxidations within titanium silicates . ACS Catal. 10 : 10169 – 10184 .
- Khouw , C.B. , Dartt , C.B. , Labinger , J.A. , and Davis , M.E. ( 1994 ). Studies on the catalytic-oxidation of alkanes and alkenes by titanium silicates . J. Catal. 149 : 195 – 205 .
- Bai , R. , Navarro , M.T. , Song , Y. et al. ( 2020 ). Titanosilicate zeolite precursors for highly efficient oxidation reactions . Chem. Sci. 11 : 12341 – 12349 .
- Yan , W. , Ramanathan , A. , Ghanta , M. , and Subramaniam , B. ( 2014 ). Towards highly selective ethylene epoxidation catalysts using hydrogen peroxide and tungsten-or niobium-incorporated mesoporous silicate (KIT-6) . Catal. Sci. Technol. 4 : 4433 – 4439 .
- Lee , H.-J. , Ghanta , M. , Busch , D.H. , and Subramaniam , B. ( 2010 ). Toward a CO 2 -free ethylene oxide process: homogeneous ethylene oxide in gas-expanded liquids . Chem. Eng. Sci. 65 : 128 – 134 .
- Alvear , M. , Fortunato , M.E. , Russo , V. et al. ( 2021 ). Continuous liquid-phase epoxidation of ethylene with hydrogen peroxide on a titanium-silicate catalyst . Ind. Eng. Chem. Res. 60 : 9429 – 9436 .
- Lu , X. , Zhou , W.-J. , Wu , H. et al. ( 2016 ). Selective synthesis of ethylene oxide through liquid-phase epoxidation of ethylene with titanosilicate/H 2 O 2 catalytic systems . Appl. Catal. A Gen. 515 : 51 – 59 .
- Xu , W. , Wang , X. , Hou , W. et al. ( 2022 ). Synergetic effects of Sn and Ti incorporated in MWW zeolites on promoting the oxidative hydration of ethylene with H 2 O 2 to ethylene glycol . J. Catal. 413 : 554 – 564 .
- Yu , Y. , Fang , N. , Chen , Z. et al. ( 2022 ). Greening oxidation catalysis: water as a solvent for efficient alkene epoxidation over a titanosilicate/H 2 O 2 system . ACS Sustain. Chem. Eng. 10 : 11641 – 11654 .