Plant Biotechnology: Its Importance, Contribution to Agriculture and Environment, and Its Future Prospects
Jeny Jose
Hungarian University of Agricultural and Life Sciences, Doctoral School of Plant Sciences, Páter Károly u. 1, Gödöllő, 2103 Hungary
Eötvös Loránd Research Network, Centre for Agricultural Research, Agricultural Institute, Department of Biological Resources, Brunszvik utca 2, Martonvásár, 2462 Hungary
Search for more papers by this authorCsaba Éva
Eötvös Loránd Research Network, Centre for Agricultural Research, Agricultural Institute, Department of Biological Resources, Brunszvik utca 2, Martonvásár, 2462 Hungary
Search for more papers by this authorJeny Jose
Hungarian University of Agricultural and Life Sciences, Doctoral School of Plant Sciences, Páter Károly u. 1, Gödöllő, 2103 Hungary
Eötvös Loránd Research Network, Centre for Agricultural Research, Agricultural Institute, Department of Biological Resources, Brunszvik utca 2, Martonvásár, 2462 Hungary
Search for more papers by this authorCsaba Éva
Eötvös Loránd Research Network, Centre for Agricultural Research, Agricultural Institute, Department of Biological Resources, Brunszvik utca 2, Martonvásár, 2462 Hungary
Search for more papers by this authorJaspal Singh
Bareilly College, Department of Environmental Science, Kalibari Road Bareilly, Bareilly, 243001 Uttar Pradesh, India
Search for more papers by this authorRajesh Bajpai
CSIR-National Botanical Research Institute, Plant Diversity Systematics & Herbarium, Rana Pratap Marg, Lucknow, 226001 India
Search for more papers by this authorRavi Kumar Gangwar
Hungarian University of Agriculture and Life Sciences, Department of Soil Science, Páter Károly u. 1, Gödöllő, 2100 Hungary
Search for more papers by this authorSummary
The environment has bestowed humans with a vast number of resources that form the crux of our everyday needs but are constantly depleting over time. Conscious efforts have to be made in order to find alternatives and ways of using these resources in a sustainable manner to safeguard them for future generations. Constant evolution of science is witnessed over a diverse array of subjects, and biotechnology has emerged as a promising field that understands and has the potential to find pragmatic solutions to environmental and agricultural problems. Plant biotechnology is the integration of biotechnological advancements into crop cultivation in order to achieve supply needs as well as ecological demands. There are several challenges like nutritional inadequacies in developing countries, pathogen infestations, time limitations, devastating diseases, environmental pollutants, among many others, that farmers and citizens face when it comes to agriculture. It is vital to understand the interconnection between environment, agriculture, plants, and biotechnology.
This chapter aims to introduce plant biotechnology from its basics to where science has taken it until now, the need for it, its position in agriculture, and its positive contribution in combating agricultural and environmental issues. The chapter also stresses clarifying the concepts of genetically modified organism s ( GMO s), how they are created in the plant kingdom, the benefits they offer, and the controversies surrounding them. The reader will have a better understanding of the real-world applications of scientific concepts created for the improvement of crops for farmers and everyone dependent on agriculture.
References
- Merriam-webster (dictionary) . Definition of Environment [Internet]. 2022 [cited 2022 Feb 22]. Available from: https://www.merriam-webster.com/dictionary/environment .
- Soetan , K.O. ( 2011 ). The role of biotechnology towards attainment of a sustainable and safe global agriculture and environment–A review . Biotechnology and Molecular Biology Review 6 : 109 – 117 .
- Nature . Environmental biotechnology - Latest research and news | Nature [Internet]. [cited 2022 Feb 22]. Available from: https://www.nature.com/subjects/environmental-biotechnology .
- ILC 88 - Report VI (1): Safety and health in agriculture. 2000 . [Internet]. [cited 2022 Feb 22]. Available from: https://www.ilo.org/public/english/standards/relm/ilc/ilc88/rep-vi-1.htm#5.1 .
- USAID, ABSPII and PBS . BRIEF #1: What is Agricultural Biotechnology? 2004. U.S. Agency for International Development (USAID), Agricultural Biotechnology Support Project II (ABSP II), and the Program for Biosafety Systems (PBS). [Internet]. [Cited 2022 Feb 22] Available from: http://absp2.cornell.edu/resources/briefs/documents/warp_briefs_eng_scr.pdf .
- USDA . Biotechnology FAQs. United Nations Department of Agriculture (USDA) [Internet]. [cited 2022 Feb 22]. Available from: https://www.usda.gov/topics/biotechnology/biotechnology-frequently-asked-questions-faqs .
- Becker , G.S. and Cowan , T. ( 2009 ). Biotechnology in animal agriculture: status and current issues . Congressional Research Service Reports 32 : 1 – 21 . [Internet]. [cited 2022 Feb 22] Available from: https://digitalcommons.unl.edu/crsdocs/32 .
-
Agrios , G.N.
(
2003
).
Diseases | plant pathology, principles
. In:
Encyclopedia of Applied Plant Sciences
,
5
e (ed.
B. Thomas
),
203
–
212
.
Elsevier
https://www.sciencedirect.com/science/article/pii/B0122270509001435
.
10.1016/B0-12-227050-9/00143-5 Google Scholar
- Rommens , C.M. , Haring , M.A. , Swords , K. et al. ( 2007 ). The intragenic approach as a new extension to traditional plant breeding . Trends in Plant Science 12 ( 9 ): 397 – 403 .
- Börner , A. , Schumann , E. , Fürste , A. et al. ( 2002 ). Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat ( Triticum aestivum L.) . Theoretical and Applied Genetics 105 ( 6–7 ): 921 – 936 .
- Gutiérrez , L. , Cuesta-Marcos , A. , Castro , A.J. et al. ( 2011 ). Association mapping of malting quality quantitative trait loci in winter barley: positive signals from small germplasm arrays . The Plant Genome 4 ( 3 ): 256 – 272 .
- Forster , B.P. ( 2001 ). Mutation genetics of salt tolerance in barley: an assessment of Golden Promise and other semi-dwarf mutants . Euphytica 120 : 317 – 328 .
- Bartlett , J.G. , Alves , S.C. , Smedley , M. et al. ( 2008 ). High-throughput Agrobacterium -mediated barle y transformation . Plant Methods 4 ( 1 ): 1 – 12 .
- Hensel , G. , Valkov , V. , Middlefell-Williams , J. , and Kumlehn , J. ( 2008 ). Efficient generation of transgenic barley: the way forward to modulate plant-microbe interactions . Journal of Plant Physiology 165 ( 1 ): 71 – 82 .
- Sega , G.A. ( 1984 ). A review of the genetic effects of ethyl methanesulfonate . Mutation Research/Reviews in Genetic Toxicology 134 : 113 – 142 .
- McCallum , C.M. , Comai , L. , Greene , E.A. , and Henikoff , S. ( 2000 ). Targeting induced local lesions IN genomes (TILLING) for plant functional genomics . Plant Physiology 123 : 439 – 442 .
- Till , B.J. , Reynolds , S.H. , Weil , C. et al. ( 2004 ). Discovery of induced point mutations in maize genes by TILLING . BMC Plant Biology 4 : 1 – 8 .
- Till , B.J. , Comai , L. , and Henikoff , S. ( 2007 ). Tilling and ecotilling for crop improvement . In: Genomics-Assisted Crop Improvement , vol. 1 , 333 – 349 . Genomics Approaches and Platforms .
- Acevedo-Garcia , J. , Spencer , D. , Thieron , H. et al. ( 2017 ). mlo -based powdery mildew resistance in hexaploid bread wheat generated by a non-transgenic TILLING approach . Plant Biotechnology Journal 15 ( 3 ): 367 – 378 .
- Olson , E.L. , Rouse , M.N. , Pumphrey , M.O. et al. ( 2013 ). Simultaneous transfer, introgression, and genomic localization of genes for resistance to stem rust race TTKSK (Ug99) from Aegilops tauschii to wheat . Theoretical and Applied Genetics 126 ( 5 ): 1179 – 1188 .
- Yu , Y. , Ye , W. , He , L. et al. ( 2013 ). Introgression of bacterial wilt resistance from eggplant to potato via protoplast fusion and genome components of the hybrids . Plant Cell Reports 32 ( 11 ): 1687 – 1701 .
- Sinden , S.L. and Webb , R.E. ( 1972 ). Effect of variety and location on the glycoalkaloid content of potatoes . American Journal of Potato Research 49 ( 9 ): 334 – 338 .
- Jinek , M. , Chylinski , K. , Fonfara , I. et al. ( 2012 ). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity . Science (80- ) 337 ( 6096 ): 816 – 821 .
- Cong , L. , Ran , F.A. , Cox , D. et al. ( 2013 ). Multiplex genome engineering using CRISPR/Cas systems . Science (80-) 339 ( 6121 ): 819 – 823 .
- Callaway , E. ( 2018 ). CRISPR plants now subject to tough GM laws in European Union . Nature 560 : 16 – 17 .
- Bevan , M.W. , Flavell , R.B. , and Chilton , M.D. ( 1983 ). A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation . Nature 304 ( 5922 ): 184 – 187 .
- Éva , C. , Tóth , G. , Oszvald , M. , and Tamás , L. ( 2014 ). Overproduction of an Arabidopsis aldo-keto reductase increases barley tolerance to oxidative and cadmium stress by an in vivo reactive aldehyde detoxification . Plant Growth Regulation 74 ( 1 ): 55 – 63 .
- Makai , S. , Éva , C. , Tamás , L. , and Juhász , A. ( 2015 ). Multiple elements controlling the expression of wheat high molecular weight glutenin paralogs . Functional & Integrative Genomics 15 ( 6 ): 661 – 672 .
- Burkhardt , P.K. , Beyer , P. , Wünn , J. et al. ( 1997 ). Transgenic rice ( Oryza sativa ) endosperm expressing d affodil ( Narcissus pseudonarcissus ) phytoene synthase accumulates phytoene, a key intermediate of provitamin A biosynthesis . The Plant Journal 11 ( 5 ): 1071 – 1078 .
- Oszvald , M. , Gardonyi , M. , Tamas , C. et al. ( 2008 ). Development and characterization of a chimaeric tissue-specific promoter in wheat and rice endosperm . In Vitro Cellular and Developmental Biology - Plant. 44 ( 1 ): 1 – 7 .
- Kasuga , M. , Liu , Q. , Miura , S. et al. ( 1999 ). Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor . Nature Biotechnology 17 ( 3 ): 287 – 291 .
- Nagaya , S. , Kawamura , K. , Shinmyo , A. , and Kato , K. ( 2010 ). The HSP terminator of arabidopsis thaliana increases gene expression in plant cells . Plant & Cell Physiology 51 ( 2 ): 328 – 332 .
- Wang , P.H. , Kumar , S. , Zeng , J. et al. ( 2020 ). Transcription terminator-mediated enhancement in transgene expression in maize: preponderance of the AUGAAU motif overlapping with poly(A) signals . Frontiers in Plant Science 11 : 570778 .
- Cohen , S.N. , Chang , A.C.Y. , Boyer , H.W. , and Helling , R.B. ( 1973 ). Construction of biologically functional bacterial plasmids in vitro . Proceedings of the National Academy of Sciences of the United States of America 70 ( 11 ): 3240 – 3244 .
- Engler , C. and Marillonnet , S. ( 2014 ). Golden gate cloning . Methods in Molecular Biology 1116 : 119 – 131 .
- Clough , S.J. and Bent , A.F. ( 1998 ). Floral dip: a simplified method for Agrobacterium -mediated transformation of Arabidopsis thaliana . The Plant Journal 16 ( 6 ): 735 – 743 .
- Kazerooni , F.P. , Shabani , M. , and Alemzadeh , A. ( 2016 ). Development of an efficient and simple in planta transformation method for barley ( Hordeum vulgare ) . Plant Cell Biotechnology and Molecular Biology 17 ( 5–6 ): 191 – 198 .
- Klein , T.M. , Sanford , J.C. , Wolf , E.D. , and Wu , R. ( 1987 ). High-velocity microprojectiles for delivering nucleic acids into living cells . Nature 327 ( 6117 ): 70 – 73 .
- Hayashimoto , A. , Li , Z. , and Murai , N. ( 1990 ). A polyethylene glycol-mediated protoplast transformation system for production of fertile transgenic rice plants . Plant Physiology 93 ( 3 ): 857 – 863 .
- Neuhaus , G. and Spangenberg , G. ( 1990 ). Plant transformation by microinjection techniques . Physiologia Plantarum 79 ( 1 ): 213 – 217 .
- Karami , O. , Esna-Ashari , M. , Kurdistani , G.K. , and Aghavaisi , B. ( 2009 ). Agrobacterium -mediated genetic transformation of plants: the role of host . Biologia Plantarum 53 : 201 – 212 .
- Pitzschke , A. and Hirt , H. ( 2010 ). New insights into an old story: Agrobacterium -induced tumour formation in plants by plant transformation . EMBO Journal 29 : 1021 – 1032 .
- Magori , S. and Citovsky , V. ( 2011 ). Epigenetic control of Agrobacterium T-DNA integration . Biochimica et Biophysica Acta, Gene Regulatory Mechanisms 1809 : 388 – 394 .
- Bevan , M. ( 1984 ). Bina ry Agrobacterium vectors for plant transformation . Nucleic Acids Research 12 ( 22 ): 8711 – 8721 .
- Wang , M.B. , Upadhyaya , N.M. , Brettell , R.I.S. , and Waterhouse , P.M. ( 1997 ). Intron-mediated improvement of a selectable marker gene for plant transformation using Agrobacterium tumefaciens . Journal of Genetics and Breeding 51 ( 4 ): 325 – 334 .
- Puchta , H. ( 2005 ). The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution . Journal of Experimental Botany 56 : 1 – 4 .
- Köhler , F. , Cardon , G. , Pöhlman , M. et al. ( 1989 ). Enhancement of transformation rates in higher plants by low-dose irradiation: Are DNA repair systems involved in the incorporation of exogenous DNA into the plant genome? Plant Molecular Biology 12 ( 2 ): 189 – 199 .
- Puchta , H. and Fauser , F. ( 2014 ). Synthetic nucleases for genome engineering in plants: prospects for a bright future . Plant Journal 78 : 727 – 741 .
- Schaefer , D.G. ( 2001 ). Gene targeting in physcomitrella patens . Current Opinion in Plant Biology 4 : 143 – 150 .
- Kanaar , R. , JHJ , H. , and Van Gent , D.C. ( 1998 ). Molecular mechanisms of DNA double-strand break repair . Trends in Cell Biology 8 : 483 – 489 .
- Kass , E.M. and Jasin , M. ( 2010 ). Collaboration and competition between DNA double-strand break repair pathways . FEBS Letters 584 : 3703 – 3708 .
- Puchta , H. ( 2017 ). Applying CRISPR/Cas for genome engineering in plants: the best is yet to come . Current Opinion in Plant Biology 36 : 1 – 8 .
- Silva , G. , Poirot , L. , Galetto , R. et al. ( 2011 ). Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy . Current Gene Therapy 11 ( 1 ): 11 – 27 .
- Urnov , F.D. , Rebar , E.J. , Holmes , M.C. et al. ( 2010 ). Genome editing with engineered zinc finger nucleases . Nature Reviews Genetics 11 : 636 – 646 .
- Becker , S. and Boch , J. ( 2021 ). TALE and TALEN genome editing technologies . Gene and Genome Editing 2 .
- Makarova , K.S. , Wolf , Y.I. , Iranzo , J. et al. ( 2020 ). Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants . Nature Reviews Microbiology 18 : 67 – 83 .
- Wright , A.V. , Nuñez , J.K. , and Doudna , J.A. ( 2016 ). Biology and applications of CRISPR systems: harnessing nature's toolbox for genome engineering . Cell 164 : 29 – 44 .
- Gaj , T. , Gersbach , C.A. , and Barbas , C.F. ( 2013 ). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering . Trends in Biotechnology 31 : 397 – 405 .
- Hsu , P.D. , Lander , E.S. , and Zhang , F. ( 2014 ). Development and applications of CRISPR-Cas9 for genome engineering . Cell 157 : 1262 – 1278 .
- Feng , Z. , Zhang , B. , Ding , W. et al. ( 2013 ). Efficient genome editing in plants using a CRISPR/Cas system . Cell Research 23 : 1229 – 1232 .
- Weninger , A. , Fischer , J.E. , Raschmanová , H. et al. ( 2018 ). Expanding the CRISPR/Cas9 toolkit for Pichia pastoris with efficient donor integration and alternative resistance markers . Journal of Cellular Biochemistry 119 ( 4 ): 3183 – 3198 .
- Nødvig , C.S. , Nielsen , J.B. , Kogle , M.E. , and Mortensen , U.H. ( 2015 ). A CRISPR-Cas9 system for genetic engineering of filamentous fungi . PLoS One 10 ( 7 ): e0133085 .
- Cai , P. , Gao , J. , and Zhou , Y. ( 2019 ). CRISPR-mediated genome editing in non-conventional yeasts for biotechnological applications . Microbial Cell Factories 18 : 1 – 12 .
- Fonfara , I. , Le Rhun , A. , Chylinski , K. et al. ( 2014 ). Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems . Nucleic Acids Research 42 ( 4 ): 2577 – 2590 .
- Nishimasu , H. , Ran , F.A. , Hsu , P.D. et al. ( 2014 ). Crystal structure of Cas9 in complex with guide RNA and target DNA . Cell 156 ( 5 ): 935 – 949 .
- Fonfara , I. , Richter , H. , BratoviÄ , M. et al. ( 2016 ). The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA . Nature 532 ( 7600 ): 517 – 521 .
- Gao , P. , Yang , H. , Rajashankar , K.R. et al. ( 2016 ). Type v CRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition . Cell Research 26, 913 ( 8 ): 901 .
- Yang , H. , Gao , P. , Rajashankar , K.R. , and Patel , D.J. ( 2016 ). PAM-dependent target DNA recognition and cleavage by C2c1 CRISPR-Cas endonuclease . Cell 167 ( 7 ): 1814 – 1828 .
- Jiang , W. , Bikard , D. , Cox , D. et al. ( 2013 ). RNA-guided editing of bacterial genomes using CRISPR-Cas systems . Nature Biotechnology 31 ( 3 ): 233 – 239 .
- Éva , C. , Oszvald , M. , and Tamás , L. ( 2019 ). Current and possible approaches for improving photosynthetic efficiency . Plant Science 280 : 433 – 440 .
- Davies , K.M. ( 2007 ). Genetic modification of plant metabolism for human health benefits . Mutation Research, Fundamental and Molecular Mechanisms of Mutagenesis 622 ( 1–2 ): 122 – 137 .
- Kurup , V.M. and Thomas , J. ( 2020 ). Edible vaccines: promises and challenges . Molecular Biotechnology 62 : 79 – 90 .
- Hood , E.E. ( 2002 ). From green plants to industrial enzymes . Enzyme and Microbial Technology 30 ( 3 ): 279 – 283 .
- ISAAA ( 2019 ). Pocket K No. 16: Biotech Crop Highlights in 2019 . https://www.isaaa.org/resources/publications/pocketk/16/ .
- Qiao , F.B. , Huang , J.K. , Wang , S.K. , and Li , Q. ( 2017 ). The impact of Bt cotton adoption on the stability of pesticide use . Journal of Integrative Agriculture 16 ( 10 ): 2346 – 2356 .
- Green , J.M. ( 2009 ). Evolution of glyphosate-resistant crop technology . Weed Science 57 ( 1 ): 108 – 117 .
- Fermin , G.A. , Castro , L.T. , and Tennant , P.F. ( 2010 ). CP-transgenic and non-transgenic approaches for the control of papaya ringspot: current situation and challenges . Transgenic Plant Journal 4 ( 1 ): 1 – 5 .
- Tang , G. , Jian , Q. , Dolnikowski , G.G. et al. ( 2009 ). Golden rice is an effective source of vitamin A . The American Journal of Clinical Nutrition 89 ( 6 ): 1776 – 1783 .
- Villanueva-Mejia , D. and Alvar ez , J.C. ( 2017 ). Genetic improvement of oilseed crops using modern biotechnology . Advances in Seed Biology 2017 : 295 – 317 .
- Asilomar , B.P. ( 1975 , 2008). DNA modification secured . Nature 455 ( 7211 ): 290 – 291 .
- Chambers , P.A. , Duggan , P.S. , Heritage , J. , and Forbes , J.M. ( 2002 ). The fate of antibiotic resistance marker genes in transgenic plant feed material fed to chickens . The Journal of Antimicrobial Chemotherapy 49 ( 1 ): 161 – 164 .
- Mohr , K.I. and Tebbe , C.C. ( 2007 ). Field study results on the probability and risk of a horizontal gene transfer from transgenic herbicide-resistant oilseed rape pollen to gut bacteria of bees . Applied Microbiology and Biotechnology 75 ( 3 ): 573 – 582 .
- Mészáros , K. , Éva , C. , Kiss , T. et al. ( 2015 ). Generating marker-free transgenic wheat using minimal gene cassette and cold-inducible Cre/Lox system . Plant Molecular Biology Reporter 33 ( 5 ): 1221 – 1231 .
- Éva , C. , Téglás , F. , Zelenyánszki , H. et al. ( 2018 ). Cold inducible promoter driven Cre-lox system proved to be highly efficient for marker gene excision in transgenic barley . Journal of Biotechnology 265 : 15 – 24 .
- Bain , C. , Selfa , T. , Dandachi , T. , and Velardi , S. ( 2017 ). ‘Superweeds’ or ‘survivors’? Framing the problem of glyphosate resistant weeds and genetically engineered crops . Journal of Rural Studies 51 : 211 – 221 .
- Ewen , S.W.B. and Pusztai , A. ( 1999 ). Effect of diets containing genetically modified potatoes expressing Galanthus nivalis lectin on rat small intestine . Lancet 354 ( 9187 ): 1353 – 1354 .
- Fedoroff N.V. ( 2006 ). Analysis of Pusztai Study on GM Potatoes and their effect on Rats . http://www.ask-force.org/web/Pusztai/Fedoroff-The_Pusztai_affair-1.pdf .
- European Commission ( 2010 ). A Decade of EU-Funded GMO Research (2001–2010) . Luxembourg : Publications Office of the European .
-
Paoletti , C.
,
Flamm , E.
,
Yan , W.
et al. (
2008
).
GMO risk assessment around the world: Some examples
.
Trends in Food Science and Technology
19
(
1
):
S70
–
S78
.
10.1016/j.tifs.2008.07.007 Google Scholar