Role of Fatty Acids and Proteins in Alteration of Microbial Cell Surface Hydrophobicity: A Regulatory Factor of Environmental Biodegradation
Babita Kumari
CSIR-National Botanical Research Institute, Plant Diversity, Systematics and Herbarium, Rana Pratap Marg, Lucknow, Uttar Pradesh, 226001 India
Search for more papers by this authorKriti Kriti
CSIR-National Botanical Research Institute, Plant Diversity, Systematics and Herbarium, Rana Pratap Marg, Lucknow, Uttar Pradesh, 226001 India
Search for more papers by this authorGayatri Singh
CSIR-National Botanical Research Institute, Plant Diversity, Systematics and Herbarium, Rana Pratap Marg, Lucknow, Uttar Pradesh, 226001 India
Search for more papers by this authorBabita Kumari
CSIR-National Botanical Research Institute, Plant Diversity, Systematics and Herbarium, Rana Pratap Marg, Lucknow, Uttar Pradesh, 226001 India
Search for more papers by this authorKriti Kriti
CSIR-National Botanical Research Institute, Plant Diversity, Systematics and Herbarium, Rana Pratap Marg, Lucknow, Uttar Pradesh, 226001 India
Search for more papers by this authorGayatri Singh
CSIR-National Botanical Research Institute, Plant Diversity, Systematics and Herbarium, Rana Pratap Marg, Lucknow, Uttar Pradesh, 226001 India
Search for more papers by this authorJaspal Singh
Bareilly College, Department of Environmental Science, Kalibari Road Bareilly, Bareilly, 243001 Uttar Pradesh, India
Search for more papers by this authorRajesh Bajpai
CSIR-National Botanical Research Institute, Plant Diversity Systematics & Herbarium, Rana Pratap Marg, Lucknow, 226001 India
Search for more papers by this authorRavi Kumar Gangwar
Hungarian University of Agriculture and Life Sciences, Department of Soil Science, Páter Károly u. 1, Gödöllő, 2100 Hungary
Search for more papers by this authorSummary
Microbes are being widely applied in various fields like pollution mitigation, biofuel and enzyme production, food industry, agriculture, and medical science. Behavior of microbes toward their environment, especially depends on the microbial cell surface. Biomolecules present on cell surface decide the fluidity or hydrophobicity of microbial cell, which results in the affinity of microbial cell toward the hydrophilic or hydrophobic substance. Microbial cell with higher hydrophobicity has been correlated with cell aggregation, biodegradation of organic pollutants, biofilm production, cell resistance toward hydrophobic substances, etc. Thus, the study of biomolecules that influence cell surface hydrophobicity (CSH) is important for better utilization of these potent natural agents for their different applications. The present study briefs about the different cell surface biomolecules (fatty acids and proteins) that are being reported as responsible for the alteration of CSH, along with the environmental factors that influence microbial cell hydrophobicity.
References
- Krasowska , A. and Sigler , K. ( 2014 ). How microorganisms use hydrophobicity and what does this mean for human needs? Frontiers in Cellular and Infection Microbiology 4 : 112 .
- Horbett , T.A. , Waldburger , J.J. , Ratner , B.D. , and Hoffman , A.S. ( 1988 ). Cell adhesion to a series of hydrophilic-hydrophobic copolymers studied with a spinning disc apparatus . Journal of Biomedical Materials Research 22 ( 5 ): 383 – 404 .
- Iimura , Y. , Hara , S. , and Otsuka , K. ( 1980 ). Fatty acids as hydrophobic substance on cell surface of film strain of Saccharomyces . Agricultural and Biological Chemistry 44 ( 6 ): 1223 – 1229 .
-
Chakarborty , S.
,
Mukhejri , S.
, and
Murkherji , S.
(
2010
).
Surface hydrophobicity of petroleum hydrocarbon degrad
ing
Burkholderia
strains and their interactions with NAPLs and surfaces
.
Colloids and Surfaces. B, Biointerfaces
78
(
102–108
):
https://doi.org/10.1016/j.colsurfb.2010.02.019
.
10.1016/j.colsurfb.2010.02.019 Google Scholar
- Heipieper , H. , Neumann , G. , Cornelissen , S. , and Meinhardt , F. ( 2007 ). Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems . Applied Microbiology and Biotechnology 74 : 961 – 973 .
- Nakayama , M. , Tomiyama , D. , Shigemune , N. et al. ( 2015 ). Cell surface hydrophobicity contributes to Lactobacillus tolerance to antibacterial actions of catechins . Food Science and Technology Research 21 ( 4 ): 583 – 588 .
- Teixeira , J.A. , Oliveira , R. Azeredo , J. , et al. ( 1995 ). Cell wall surface properties and flocculence of a Kluyveromyces marxianus strain . Colloids and Surfaces B: Biointerfaces 5 ( 3-4 ): 197 – 120 .
- Danchik , C. and Casadevall , A. ( 2021 ). Role of cell surface hydrophobicity in the pathogenesis of medically-significant fungi . Frontiers in Cellular and Infection Microbiology 10 : 594973 : https://doi.org/10.3389/fcimb.2020.594973 .
- Gogra , A.B. , Yao , J. , Sandy , E.H. et al. ( 2010 ). Cell surface hydrophobicity (CSH) of Escherichia coli , Staphylococcus aureus and Aspergillus niger and the biodegradation of Diethyl Phthalate (DEP) via Microcalorimetry . Journal of American Science 6 ( 7 ): 78 – 88 .
- Neumann , G. , Cornelissen , S. , van Breukelen , F. et al. ( 2006 ). Energetics and surface properties of Pseudomonas putida DOT-T1E in a two-phase fermentation system with 1-decanol as second phase . Applied and Environmental Microbiology 72 : 4232 – 4238 .
- Baumgarten , T. , Sperling , S. , Seifert , J. et al. ( 2012 ). Membrane vesicle formation as a multiple-stress response mechanism enhances Pseudomonas putida DOT-T1E cell surface hydrophobicity and biofilm formation . Applied and Environmental Microbiology 78 ( 17 ): 6217 – 6622 .
- Kurinčič , M. , Jeršek , B. , Klančnik , A. et al. ( 2016 ). Effects of natural antimicrobials on bacterial cell hydrophobicity, adhesion, and zeta potential . Arhiv za Higijenu Rada i Toksikologiju 67 : 39 – 45 .
- Silva-Dias , A. , Miranda , I.M. , Branco , J. et al. ( 2015 ). Adhesion, biofilm formation, cell surface hydrophobicity, and antifungal planktonic susceptibility: relationship among Candida spp . Frontiers in Microbiology 6 : 205 .
- Khan , D.M. , Manzoor , M.A.P. , Rao , I.V. , and Moosabba , M.S. ( 2019 ). Evaluation of biofilm formation, cell surface hydrophobicity and gelatinase activity in Acinetobacter baumannii strains isolated from patients of diabetic and non-diabetic foot ulcer infections . Biocatalysis and Agricultural Biotechnology 18 : 101007 .
- Kumari , B. , Singh , S.S.N. , and DP. ( 2012 ). Characterization of two biosurfactant producing strains in crude oil degradation . Process Biochemistry 47 ( 12 ): 2463 – 2471 .
- Tribedi , P. and Sil , A.K. ( 2013 ). Cell surface hydrophobicity: a key component in the degradation of polyethylene succinate by Pseudomonas sp. AKS2 . Journal of Applied Microbiology 116 : 295 – 303 .
- Cheng , Z. , Zhang , X. , Kennes , C. et al. ( 2019 ). Differences of cell surface characteristics between t he bacterium Pseudomonas veronii and fungus Ophiostoma stenoceras and their different adsorption properties to hydrophobic organic compounds . Science of the Total Environment 650 ( 2 ): 2095 – 2106 .
- Katsikogianni , M. and Missirlis , Y.F. ( 2004 ). Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteriamaterial interactions . European Cells & Materials 8 : 37 – 57 .
- Sohlenkamp , C. and Geiger , O. ( 2016 ). Bacterial membrane lipids: diversity in structures and pathways . FEMS Microbiology Reviews 40 ( 1 ): 133 – 159 .
- Briley , M.S. , Illigworth , R.F. , Rose , A.H. , and Fisher , D.J. ( 1970 ). Evidence for a surface protein layer on the Saccharomyces cerevisiae ascospore . Journal of Bacteriology 104 : 588 .
- Ouchi , K. , Kikuchi , T. , and Nunokawa , Y. ( 1974 ). Effect of various treatments on the affinity for air bubbles of sake yeast Kyokai no 7 and its foaming mutant . Journal of Fermentation Technology 52 : 811 – 817 .
- Wickerham , L.J. and Burton , K.A. ( 1962 ). Phylogeny and biochemistry of the genus Hansenula 1 . Bacteriological Reviews 26 ( 4 ): 382 – 397 .
- Fisher , D.J. , Holloway , P.J. , and Richard , D.V. ( 1972 ). Fatty acid and hydrocarbon constituents of the surface and wall lipids of some fungal spores . Microbiologica 72 ( 1 ): 71 .
- Voet , D. and Voet , J. ( 1995 ). Biochemistry , 2 e, 317 . New York : Wiley .
- Shiradhone , A.B. , Ingle , S.S. , and Zore , A.G.B. ( 2018 ). Microenvironment responsive modulations in the fatty acid content, cell surface hydrophobicity, and adhesion of Candida albicans Cells . Journal of Fungi (Basel) 4 ( 2 ): 47 . https://doi.org/10.3390/jof4020047 . PMID: 29642416; PMCID: PMC6024300.
- Lin , W. , Liu , S. , Tong , L. et al. ( 2017 ). Effects of rhamnolipids on the cell surface characteristics of Sphingomonas sp. GY2B and the biodegradation of phenanthrene . RSC Advances 7 : 24321 – 24330 .
- Kaczorek , E. , Sałek , K. , Guzik , U. , and Dudzińska-Bajorek , B. ( 2013 ). Cell surface properties and fatty acids composition of Stenotrophomonas maltophilia under the influence of hydrophobic compounds and surfactants . New Biotechnology 30 ( 2 ): 173 – 182 .
- Konieczna , M. , Olzog , M. , Naether , D.J. et al. ( 2018 ). Membrane fatty acid composition and cell surface hydrophobicity of Marine hydrocarbonoclastic Alcanivorax borkumensis SK2 grown on diesel, biodiesel and rapeseed oil as carbon sources . Molecules 23 ( 6 ): E1432 .
- Lisle , J.T. , Broadaway , S.C. , Prescott , A.M. et al. ( 1998 ). Effects of starvation on physiological activity and chlorine disinfection resistance in Escherichia coli O157:H7 . Applied and Environmental Microbiology 64 : 4658 – 4665 .
- Moorman , M.A. , Thelemann , C.A. , Zhou , S. et al. ( 2008 ). Altered hydrophobicity and membrane composition in stress-adapted Listeria innocua . Journal of Food Protection 71 ( 1 ): 182 – 185 .
- Juneja , V.K. , Foglia , T.A. , and Marmer , B.S. ( 1998 ). Heat resistance and fatty acid composition of Listeria monocytogenes : effect of pH, acidulant, and growth temperature . Journal of Food Protection 61 : 683 – 687 .
- Yuk , H.G. and Marshall , D.L. ( 2003 ). Heat adaptation alters Escherichia coli O157:H7 membrane lipid compo sition and verotoxin production . Applied and Environmental Microbiology 69 : 5115 – 5119 .
- Shahbazi , S. , Nateghi , L. , and Aghababyan , A. ( 2016 ). Effect of fatty acids on hydrophobicity of the cell membrane of Lactobacillus species . Applications of Food Biotechnology 3 ( 3 ): 194 – 200 .
- Potter , G. , Budge , S.M. , and Speers , R.A. ( 2015 ). Flocculation, cell surface hydrophobicity and 3-OH oxylipins in the SMA strain of Saccharomyces pastorianus . Journal of the Institute of Brewing 121 : 31 – 37 .
- Naether , D.J. , Slawtschew , S. , Stasik , S. et al. ( 2013 ). Adaptation of the hydrocarbonoclastic bacterium Alcanivorax borkumensis SK2 to alkanes and toxic organic compounds: a physiological and transcriptomic approach . Applied and Environmental Microbiology 79 ( 14 ): 4282 – 4293 .
- Lahesaare , A. , Ainelo , H. , Teppo , A. et al. ( 2016 ). LapF and its regulation by Fis affect the cell surface hydrophobicity of Pseudomonas putida . PLoS One 11 ( 11 ): e0166078 . https://doi.org/10.1371/journal. pone.0166078.
- Lesage , G. and Bussey , H. ( 2006 ). Cell wall assembly in Saccharomyces cerevisiae . Microbiology and Molecular Biology Reviews 70 ( 2 ): 317 – 343 .
-
Goswami , R.R.
,
Pohare , S.D.
,
Raut , J.S.
, and
Karuppayil , M.
(
2017
).
Cell surface hydrophobicity as a virulence factor in
Candida albicans
.
Biosciences Biotechnology Research Asia
4
(
4
):
1503
–
1511
.
10.13005/bbra/2598 Google Scholar
- Bester , M.C. , Jacobson , D. , and Bauer , F.F. ( 2012 ). Many Saccharomyces cerevisiae cell wall protein encoding genes are coregulated by Mss11, but cellular adhesion phenotypes appear only Flo protein dependent G3 . Genes, Genomes, Genetic 2 : 131 – 141 .
- van Mulders , S.E. , Christianen , E. , Saerens , S.M. et al. ( 2009 ). Phenotypic diversity of Flo protein family-mediated adhesion in Saccharomyces cerevisiae . FEMS Yeast Research 9 ( 2 ): 178 – 190 . https://doi.org/10.1111/j.1567-1364.2008.00462.x .
- Bony , M. , Thines-Sempoux , D. , Barre , P. , and Blondin , B. ( 1997 ). Localization and cell surface anchoring of the Saccharomyces cerevisiae flocculation protein Flo1p . Journal of Bacteriology 179 : 4929 – 4936 .
- Masy , C.L. , Henquinet , A. , and Mestdagh , M.M. ( 1992 ). Fluorescence study of lectinlike receptors involved in the flocculation of the yeast Saccharomyces cerevisiae . Canadian Journal of Microbiology 38 ( 5 ): 405 – 409 .
-
Caro , L.H.P.
,
Tettelin , H.
,
Vossen , J.H.
et al. (
1997
).
In silicio identification of glycosyl-phosphatidylinositol-anchored plasma-membrane and cell wall proteins of
Saccharomyces cerevisiae
.
Yeast
13
:
1477
–
1489
.
10.1002/(SICI)1097-0061(199712)13:15<1477::AID-YEA184>3.0.CO;2-L CAS PubMed Web of Science® Google Scholar
- Goossens , K.V.Y. , Stassen , C. , Stals , I. et al. ( 2011 ). The N-terminal domain of the FLO1 flocculation protein from Saccharomyces cerevisiae binds specifically to mannose carbohydrates . Eukaryotic Cell 10 : 110 – 117 .
- Govender , P. , Domingo , J.L. , Bester , M.C. et al. ( 2008 ). Controlled expression of the dominant flocculation genes FLO1, FLO5, and FLO11 in Saccharomyces cerevisiae . Applied and Environmental Microbiology 74 : 6041 – 6052 .
- Fleming , A.B. and Pennings , S. ( 2001 ). Antagonistic remodelling by Swi-Snf and Tup1-Ssn6 of an exte nsive chromatin region forms the background for FLO1 gene regulation . The EMBO Journal 20 : 5219 – 5231 .
- Conlan , R.S. and Tzamarias , D. ( 2001 ). Sfl1 functions via the co-repressor Ssn6-Tup1 and the cAMP-dependent protein kinase Tpk2 . Journal of Molecular Biology 309 : 1007 – 1015 .
- Ishigami , M. , Nakagawa , Y. , Hayakawa , M. , and Iimura , Y. ( 2006 ). FLO11 is the primary factor in flor formation caused by cell surface hydrophobicity in wild-type flor yeast . Bioscience, Biotechnology, and Biochemistry 70 : 660 – 666 .
- Lo , W.S. and Dranginis , A.M. ( 1998 ). The cell surface flocculin Flo11 is required for pseudohyphae formation and invasion by Saccharomyces cerevisiae . Molecular Biology of the Cell 9 : 161 – 171 .
- Bayly , J.C. , Douglas , L.M. , Pretorius , I.S. et al. ( 2005 ). Characteristics of Flo11-dependent flocculation in Saccharomyces cerevisiae . FEMS Yeast Research 5 ( 12 ): 1151 – 1156 .
- Reynolds , T.B. and Fink , G.R. ( 2001 ). Bakers' yeast, a model for fungal biofilm formation . Science 291 : 878 – 881 .
- Lipke , P.N. and Ovalle , R. ( 1998 ). Cell wall architecture in yeast: new structure and new challenges . Journal of Bacteriology 180 ( 15 ): 3735 – 3740 .
- Pittet , M. and Conzelmann , A. ( 2007 ). Biosynthesis and function of GPI proteins in the yeast Saccharomyces cerevisiae . Biochimica et Biophysica Acta 1771 : 405 – 420 .
- Dranginis , A.M. , Rauceo , J.M. , Coronado , J.E. , and Lipke , P.N. ( 2007 ). A biochemical guide to yeast adhesins: glycoproteins for social and antisocial occasions . Microbiology and Molecular Biology Reviews 71 : 282 – 294 .
- Kobayashi , O. , Hayashi , N. , Kuroki , R. , and Sone , H. ( 1998 ). Region of Flo1 proteins responsible for sugar recognition . Journal of Bacteriology 180 : 6503 – 6510 .
- Zupancic , M.L. , Frieman , M. , Smith , D. et al. ( 2008 ). Glycan microarray analysis of Candida glabrata adhesin ligand specificity . Molecular Microbiology 68 : 547 – 559 .
- Kobayashi , H. , Takami , H. , Hirayama , H. et al. ( 1999 ). Outer membrane changes in a toluene-sensitive mutant of toluene-tolerant Pseudomonas putida IH-2000 . Journal of Bacteriology 181 ( 15 ): 4493 – 4498 .
- Parker , N.D. and Munn , C.B. ( 1984 ). Increased cell surface hydrophobicity associated with possession of an additional surface protein by Aeromonas salmonicida . FEMS Microbiology Letters 21 : 233 – 237 .
- Gjermansen , M. , Nilsson , M. , Yang , L. , and Tolker-Nielsen , T. ( 2010 ). Characterization of starvation-induced dispersion in Pseudomonas putida biofilms: genetic elements and molecular mechanisms . Molecular Microbiology 75 ( 4 ): 815 – 826 .
- Moor , H. , Teppo , A. , Lahesaare , A. et al. ( 2014 ). Fis overexpression enhances Pseudomonas putida biofilm formation by regulating the ratio of LapA and LapF . Microbiologica 160 : 2681 – 2693 .
- Fuqua , C. ( 2010 ). Passing the baton between laps: adhesion and cohesion in Pseudomonas putida biofilms . Molecular Microbiology 77 ( 3 ): 533 – 536 .
- Boyd , C.D. , Smith , T.J. , El-Kirat-Chatel , S. et al. ( 2014 ). Structural features of the Pseudomonas fluorescens biofilm adhesin LapA required for LapG-dependent cleavage, biofilm formation, and cell surface localization . Journal of Bacteriology 196 ( 15 ): 2775 – 2788 .
- Bujdáková , H. , Didiášová , M. , Drahovská , H. , and Černáková , L. ( 2013 ). Role of cell surface hydrophobicity in Candida albicans biofilm . Central European Journal of Biology 8 ( 3 ): 259 – 262 .
- Singleton , D.R. , Masuoka , J. , and Hazen , K.C. ( 2001 ). Cloning and analysis of a Candida albicans gene that affects cell surface hydrophobicity . Journal of Bacteriology 183 : 3582 – 3588 .
- Jones , T. , Federspiel , N.A. , Chibana , H. et al. ( 2004 ). The diploid genome sequence of Candida albicans . Proceedings of the National Academy of Sciences of the United States of America 101 : 7329 – 7334 .
- Singleton , D.R. and Hazen , K.C. ( 2004 ). Differential surface localization and temperature-dependent expression of the Candida albicans CSH1 protein . Microbiologica 150 : 285 – 292 .
- Kay , W.W. , Buckley , J.T. , Ishiguro , E.E. et al. ( 1981 ). Purification and disposition of a surface protein associated with virulence of Aeromonas salmonicida . Journal of Bacteriology 147 ( 3 ): 1077 – 1084 .
- Hobley , L. , Ostrowski , A. , Rao , F.V. et al. ( 2013 ). BslA is a self-assembling bacterial hydrophobin that coats the Bacillus subtilis biofilm . Proceedings of the National Academy of Sciences of the United States of America 110 ( 33 ): 13600 – 13605 .
- Shimoi , H. , Sakamoto , K. , Okuda , M. et al. ( 2002 ). The Awa1 gene is required for the foam-forming phenotype and cell surface hydrophobicity of sake yeast . Applied and Environmental Microbiology 68 ( 4 ): 2018 – 2025 .
- Thornton , R.J. ( 1978 ). Investigation on the genetics of foaming in wine yeasts . European Journal of Applied Microbiology and Biotechnology 5 : 103 – 107 .
- Blasco , L. , Veiga-Crespo , P. , and Villa , T.G. ( 2011 ). FPG1, a gene involved in foam formation in Saccharomyces cerevisiae . Yeast 28 : 437 – 451 .
- Otto , K. and Silhavy , T.J. ( 2002 ). Surface sensing and adhesion of Escherichia coli controlled by the Cpx-signaling pathway . PNAS 99 ( 4 ): 2287 – 2292 .
- Hung , D.L. , Pinkner , J.S. , and Hultgren , S.J. ( 1999 ). Structural basis of chaperone self-capping in P pilus biogenesis . Proceedings of the National Academy of Sciences of the United States of America 96 : 8178 – 8183 .
- Raivio , T.L. and Silhavy , T.J. ( 1999 ). The sigmaE and Cpx regulatory pathways: overlapping but distinct envelope stress responses . Current Opinion in Microbiology 2 ( 2 ): 159 – 165 .
- Okuyama , H. , Orikasa , Y. , and Nishida , T. ( 2008 ). Significance of antioxidative function of eicosapentaenoic and docosahexaenoic acids in marine microorganisms . Applied and Environmental Microbiology 74 : 570 – 574 .
- Andersen , O.S. and Koeppe , R.E. ( 2007 ). Bilayer thickness and membrane protein function: an energetic pe rspective . Annual Review of Biophysics and Biomolecular Structure 36 : 107 – 130 .
- Nishida , T. , Hori , R. , Morita , N. , and Okuyama , H. ( 2010 ). Membrane eicosapentaenoic acid is involved in the hydrophobicity of bacterial cells and ejects the entry of hydrophilic and hydrophobic compounds . FEMS Microbiology Letters 306 : 91 – 96 .
- Nishida , T. , Orikasa , Y. , Ito , Y. et al. ( 2006 ). Escherichia coli engineered to produce eicosapentaenoic acid becomes resistant against oxidative damages . FEBS Letters 580 : 2731 – 2735 .
- Nishida , T. , Yano , Y. , Morita , N. , and Okuyama , H. ( 2007 ). The antioxidative function of eicosapentaenoic acid in a marine bacterium, Shewanella marinintestina IK-1 . FEBS Letters 581 ( 22 ): 4212 – 4216 .
- Tsuneda , S. , Aikawa , H. , Hayashi , H. et al. ( 2003 ). Extracellular polymeric substances responsible for bacterial adhesion onto solid surface . FEMS Microbiology Letters 223 : 287 – 292 .
- Kawamoto , J. , Kurihara , T. , Yamamoto , K. et al. ( 2009 ). Eicosapentaenoic acid plays a beneficial role in membrane organization and cell division of a cold-adapted bacterium, Shewanella livingstonensis Ac10 . Journal of Bacteriology 191 : 632 – 640 .
- Zhang , Y. and Miller , R.M. ( 1994 ). Effect of a Pseudomonas rhamnolipides biosurfactant on cell hydrophobicity and biodegradation of octadecane . Applied and Environmental Microbiology 60 : 2101 – 2106 .
- Ahimou , F. , Jacques , P. , and Deleu , M. ( 2000 ). Surfactin and iturin, A effects on Bacillus subtilis surface hydrophobicity . Enzyme and Microbial Technology 27 ( 10 ): 749 – 754 .
- Zhao , Z. , Selvam , A. , and Wong , J.W. ( 2011 ). Effects of rhamnolipids on cell surface hydrophobicity of PAH degrading bacteria and the biodegradation of phenanthrene . Bioresource Technology 102 ( 5 ): 3999 – 4007 .
- Pijanowska , A. , Kaczorek , E. , Chrzanowski , Ł. , and Olszanowski , A. ( 2007 ). Cell hydrophobicity of Pseudomonas spp. and Bacillus spp. bacteria and hydrocarbon biodegradation in the presence of Quillaya saponin . World Journal of Microbiology and Biotechnology 23 : 677 – 682 .
- Kaczorek , E. , Chrzanowski , Ł. , Pijanowska , A. , and Olszanowski , A. ( 2008 ). Yeast and bacteria cell hydrophobicity and hydrocarbon biodegradation in the presence of natural surfactants: rhamnolipides and saponins . Bioresource Technology 99 : 4285 – 4291 .
- Borecká-Melkusová , S. and Bujdaková , H. ( 2008 ). Variation of cell surface hydrophobicity and biofilm formation among genotypes of Candida albicans and Candida dubliniensis under antifungal treatment . Canadian Journal of Microbiology 54 ( 718–724 ): https://doi.org/10.1139/W08-060 .
- Kohnen , W. , Kolbenschlag , C. , Teske-Keiser , S. , and Jansen , B. ( 2003 ). Development of a long-lasting ventricular catheter impregnated with a combination of antibiotics . Biomaterials 24 : 4865 – 4869 .
- Bunt , C.R. , Jones , D.S. , and Tucker , I.G. ( 1993 ). The effects of pH, ionic strength and organic phase on the bacterial adhesion to hydrocarbons (BATH) test . International Journal of Pharmaceutics 99 : 93 – 98 .
- Ong , Y.-L. , Razatos , A. , Georgiou , G. , and Sharma , M.M. ( 1999 ). Adhesion forces between E. coli bacteria and biomaterial surfaces . Langmuir 15 : 2719 – 2725 .
- Mafu , A.A. , Roy , D. , Goulet , J. , and Savoie , L. ( 1991 ). Characterization of physicochemical forces involved in adhesion of Listeria monocytogenes to surfaces . Applied and Environmental Microbiology 57 ( 7 ): 1969 – 1973 .
- Leyer , G.J. and Johnson , E.A. ( 1993 ). Acid adaptation induces cross protection against environmental stresses in Salmonella typhimurium . Applied and Environmental Microbiology 59 : 1842 – 1847 .
- Li , J. , Chikindas , M.L. , Ludescher , R.D. , and Montville , T.J. ( 2002 ). Temperature- and surfactant-induced membrane modifications that alter Listeria monocytogenes nisin sensitivity by different mechanisms . Applied and Environmental Microbiology 68 : 5904 – 5910 .
- Takahashi , H. , Suda , T. , Tanaka , Y. , and Kimura , B. ( 2010 ). Cellular hydrophobicity of Listeria monocytogenes involves initial attachment and biofilm formation on the surface of polyvinyl chloride . Letters in Applied Microbiology 50 : 618 – 625 .
- Das , M.P. and Kumar , S. ( 2013 ). Influence of cell surface hydrophobicity in colonization and biofilm formation on LDPE biodegradation . International Journal of Pharmacy and Pharmaceutical Sciences 5 ( 4 ): 690 – 694 .