Shape-memory Polymers for Tissue Engineering Applications
Fangyuan Zheng
Basque Centre for Materials, Applications and Nanostructures (BCMaterials), Sarriena no number, Leioa, 48940 Spain
Search for more papers by this authorAne García-García
Basque Centre for Materials, Applications and Nanostructures (BCMaterials), Sarriena no number, Leioa, 48940 Spain
University of Basque Country, Macromolecular Chemistry Group (LABQUIMAC), Faculty of Science and Technology, Department of Physical Chemistry, Sarriena no number, Leioa, 48940 Spain
Search for more papers by this authorIsabel Moreno-Benítez
Basque Centre for Materials, Applications and Nanostructures (BCMaterials), Sarriena no number, Leioa, 48940 Spain
Search for more papers by this authorLeire Ruiz-Rubio
Basque Centre for Materials, Applications and Nanostructures (BCMaterials), Sarriena no number, Leioa, 48940 Spain
University of Basque Country, Macromolecular Chemistry Group (LABQUIMAC), Faculty of Science and Technology, Department of Physical Chemistry, Sarriena no number, Leioa, 48940 Spain
Search for more papers by this authorLeyre Pérez-Álvarez
Basque Centre for Materials, Applications and Nanostructures (BCMaterials), Sarriena no number, Leioa, 48940 Spain
University of Basque Country, Macromolecular Chemistry Group (LABQUIMAC), Faculty of Science and Technology, Department of Physical Chemistry, Sarriena no number, Leioa, 48940 Spain
Search for more papers by this authorJosé L. Vilas-Vilela
Basque Centre for Materials, Applications and Nanostructures (BCMaterials), Sarriena no number, Leioa, 48940 Spain
University of Basque Country, Macromolecular Chemistry Group (LABQUIMAC), Faculty of Science and Technology, Department of Physical Chemistry, Sarriena no number, Leioa, 48940 Spain
Search for more papers by this authorFangyuan Zheng
Basque Centre for Materials, Applications and Nanostructures (BCMaterials), Sarriena no number, Leioa, 48940 Spain
Search for more papers by this authorAne García-García
Basque Centre for Materials, Applications and Nanostructures (BCMaterials), Sarriena no number, Leioa, 48940 Spain
University of Basque Country, Macromolecular Chemistry Group (LABQUIMAC), Faculty of Science and Technology, Department of Physical Chemistry, Sarriena no number, Leioa, 48940 Spain
Search for more papers by this authorIsabel Moreno-Benítez
Basque Centre for Materials, Applications and Nanostructures (BCMaterials), Sarriena no number, Leioa, 48940 Spain
Search for more papers by this authorLeire Ruiz-Rubio
Basque Centre for Materials, Applications and Nanostructures (BCMaterials), Sarriena no number, Leioa, 48940 Spain
University of Basque Country, Macromolecular Chemistry Group (LABQUIMAC), Faculty of Science and Technology, Department of Physical Chemistry, Sarriena no number, Leioa, 48940 Spain
Search for more papers by this authorLeyre Pérez-Álvarez
Basque Centre for Materials, Applications and Nanostructures (BCMaterials), Sarriena no number, Leioa, 48940 Spain
University of Basque Country, Macromolecular Chemistry Group (LABQUIMAC), Faculty of Science and Technology, Department of Physical Chemistry, Sarriena no number, Leioa, 48940 Spain
Search for more papers by this authorJosé L. Vilas-Vilela
Basque Centre for Materials, Applications and Nanostructures (BCMaterials), Sarriena no number, Leioa, 48940 Spain
University of Basque Country, Macromolecular Chemistry Group (LABQUIMAC), Faculty of Science and Technology, Department of Physical Chemistry, Sarriena no number, Leioa, 48940 Spain
Search for more papers by this authorSenentxu Lanceros-Méndez
Basque Center for Materials Applications, UPV/EHU Science Park, Leioa, 48940 Spain
Search for more papers by this authorClarisse Ribeiro
Universidade do Minho, Braga, 4710-057 Portugal
Search for more papers by this authorUnai Silván
Basque Center Mater, Appl, Nanostruc, UPV/EHU Science Park, Leioa, 48940 Spain
Search for more papers by this authorSummary
Growing interest on tissue engineering has driven the fast advancement of shape-memory polymers. These materials are able to recover a programmed shape when an external stimulus is applied. This unique functionality has been used to promote tissue defect filling and stimulate cell differentiation and new tissue generation. In this review, we describe the structural specifications that explain the shape recovery in the diverse range of shape-memory polymers, as well as the critical requirements that must been considered in their design to their successful integration and in vivo performance. Moreover, this chapter reviews recent investigations related to tissue engineering applications of shape-memory homopolymers/copolymers, composites, and hydrogels. We reviewed the physicochemical properties of SMPs with a huge variety of structures and trigger stimuli, and their contributions to the tissue regeneration and formation in cellular and in vivo experiments devoted to the repair of different tissue types. New perspectives in the field that allow the effective translation of these materials to the clinic are also highlighted.
References
-
Nie , X.
,
Wu , S.
,
Lv , P.
et al. (
2022
).
Chameleon-inspired iridescent structural color textiles with reversible multiple stimulus-responsive functions
.
Chemical Engineering Journal
433
:
https://doi.org/10.1016/j.cej.2021.134410
.
10.1016/j.cej.2021.134410 Google Scholar
- Lendlein , A. , Balk , M. , Tarazona , N.A. , and Gould , O.E.C. ( 2019 ). Bioperspectives for shape-memory polymers as shape programmable, active materials . Biomacromolecules 20 ( 10 ): 3627 – 3640 . https://doi.org/10.1021/acs.biomac.9b01074 .
-
Delaey , J.
,
Dubruel , P.
, and
Van Vlierberghe , S.
(
2020
).
Shape-memory polymers for biomedical applications
.
Advanced Functional Materials
30
(
44
):
https://doi.org/10.1002/adfm.201909047
.
10.1002/adfm.201909047 Google Scholar
-
Xia , Y.
,
He , Y.
,
Zhang , F.
et al. (
2021
).
A review of shape memory polymers and composites: mechanisms, materials, and applications
.
Advanced Materials
33
(
6
):
https://doi.org/10.1002/adma.202000713
.
10.1002/adma.202000713 Google Scholar
- Behl , M. and Lendlein , A. ( 2007 ). Shape-memory polymers . Materials Today 10 : 20 – 28 .
-
Ebara , M.
(
2015
).
Shape-memory surfaces for cell mechanobiology
.
Science and Technology of Advanced Materials
16
:
1
.
https://doi.org/10.1088/1468-6996/16/1/014804
.
10.1088/1468-6996/16/1/014804 Google Scholar
- wo MER , M. and Attorney , B.Y. ( 1941 ). Process of manufacturing articles of thermoplastic synthetic resins polymer mixing the producting a soft rubbery blawk molding the blank with pressure not exceeding 700% Temperature not Exceeptava /O5 °C (4 2-Ag/Inventors, JN-a-road hu 22 (Vol. 234).
- Rainer , W.C. , Redding , E.M. , Hitov , J.J. et al. ( 1964 ). Polyethylene Product and Process (Vol. 398, Issue 742) . https://patentimages.storage.googleapis.com/a4/56/27/dd18dc02a5ab92/US3144398.pdf .
- Hager , M.D. , Bode , S. , Weber , C. , and Schubert , U.S. ( 2015 ). Shape memory polymers: past, present and future developments . Progress in Polymer Science 49–50 : 3 – 33 . https://doi.org/10.1016/j.progpolymsci.2015.04.002 .
-
Li , G.
,
Li , Z.
,
Min , Y.
et al. (
2023
).
3D-printed piezoelectric scaffolds with shape memory polymer for bone regeneration
.
Small
19
(
40
):
https://doi.org/10.1002/smll.202302927
.
10.1002/smll.202302927 Google Scholar
- Pfau , M.R. and Grunlan , M.A. ( 2021 ). Smart scaffolds: shape memory polymers (SMPs) in tissue engineering . Journal of Materials Chemistry B 9 ( 21 ): 4287 – 4297 . https://doi.org/10.1039/d1tb00607j .
-
Bayart , M.
,
Charlon , S.
, and
Soulestin , J.
(
2021
).
Fused filament fabrication of scaffolds for tissue engineering; how
realistic is shape-memory? A review
.
Polymer
217
:
https://doi.org/10.1016/j.polymer.2021.123440
.
10.1016/j.polymer.2021.123440 Google Scholar
- Peng , M. , Zhao , Q. , Wang , M. , and Du , X. ( 2023 ). Reconfigurable scaffolds for adaptive tissue regeneration . Nanoscale 15 ( 13 ): 6105 – 6120 . https://doi.org/10.1039/d3nr00281k .
- Zhang , W. , Yu , M. , Cao , Y. et al. ( 2023 ). An anti-bacterial porous shape memory self-adaptive stiffened polymer for alveolar bone regeneration after tooth extraction . Bioactive Materials 21 : 450 – 463 . https://doi.org/10.1016/j.bioactmat.2022.08.030 .
-
Ramaraju , H.
,
Akman , R.E.
,
Safranski , D.L.
, and
Hollister , S.J.
(
2020
).
Designing biodegradable shape memory polymers for tissue repair
.
Advanced Functional Materials
30
(
44
):
2002014
.
https://doi.org/10.1002/adfm.202002014
.
10.1002/adfm.202002014 Google Scholar
- Peterson , G.I. , Dobrynin , A.V. , and Becker , M.L. ( 2017 ). Biodegradable shape memory polymers in medicine . Advanced Healthcare Materials 6 ( 21 ): https://doi.org/10.1002/adhm.201700694 .
- Li , T. , Chen , L. , Yuan , Y. , and Shi , R. ( 2023 ). The current status, prospects, and challenges of shape memory polymers application in bone tissue engineering . Polymers 15 ( 3 ): 556 . https://doi.org/10.3390/polym15030556 .
-
Scalet , G.
(
2020
).
Two-way and multiple-way shape memory polymers for soft robotics: an overview
.
Actuators
9
(
1
):
https://doi.org/10.3390/act9010010
.
10.3390/act9010010 Google Scholar
- Löwenberg , C. , Balk , M. , Wischke , C. et al. ( 2017 ). Shape-memory hydrogels: evolution of structural principles to enable shape switching of hydrophilic polymer networks . Accounts of Chemical Research 50 ( 4 ): 723 – 732 . https://doi.org/10.1021/acs.accounts.6b00584 .
- Shang , J. , Le , X. , Zhang , J. et al. ( 2019 ). Trends in polymeric shape memory hydrogels and hydrogel actuators . Polymer Chemistry 10 ( 9 ): 1036 – 1055 . https://doi.org/10.1039/c8py01286e .
- Xie , H. , Yang , K.K. , and Wang , Y.Z. ( 2019 ). Photo-cross-linking: a powerful and versatile strategy to develop shape-memory polymers . Progress in Polymer Science 95 : 32 – 64 . https://doi.org/10.1016/j.progpolymsci.2019.05.001 .
- J. Parameswaranpillai , S. Siengchin , J.J. George , and J. Seno (ed.) ( 2020 ). Advanced Structured Materials Shape Memory Polymers, Blends and Composites Advances and Applications . Springer http://www.springer.com/series/8611 .
-
Fang , L.
,
Yan , W.
,
Chen , S.
et al. (
2023
).
Light and shape-memory polymers: characterization, preparation, stimulation, and application
.
Macromolecular Materials and Engineering
https://doi.org/10.1002/mame.202300158
.
10.1002/mame.202300158 Google Scholar
-
Ehrmann , G.
and
Ehrmann , A.
(
2021
).
3D printing of shape memory polymers
.
Journal of Applied Polymer Science
138
(
34
):
https://doi.org/10.1002/app.50847
.
10.1002/app.50847 Google Scholar
- Li , Y.J. , Zhang , F.H. , Liu , Y.J. , and Leng , J.S. ( 2020 ). 4D printed shape memory polymers and their structures for biomedical applications . Science China Technological Sciences 63 ( 4 ): 545 – 560 . https://doi.org/10.1007/s11431-019-1494-0 .
-
Qi , X.
,
Pan , C.
,
Zhang , L.
, and
Yue , D.
(
2022
).
Bio-based, self-healing, recyclable, reconfigurable multifunctional polymers
with both one-way and two-way shape memory properties
.
ACS Applied Materials and Interfaces
https://doi.org/10.1021/acsami.2c19782
.
10.1021/acsami.2c19782 Google Scholar
- Behl , M. , Razzaq , M.Y. , and Lendlein , A. ( 2010 ). Multifunctional shape-memory polymers . Advanced Materials 22 ( 31 ): 3388 – 3410 . https://doi.org/10.1002/adma.200904447 .
- Zhang , S. , Feng , Y. , Zhang , L. et al. ( 2007 ). Novel interpenetrating networks with shape-memory properties . Journal of Polymer Science, Part A: Polymer Chemistry 45 ( 5 ): 768 – 775 . https://doi.org/10.1002/pola.21832 .
- Saed , M.O. , Gablier , A. , and Terentjev , E.M. ( 2022 ). Exchangeable liquid crystalline elastomers and their applications . Chemical Reviews 122 ( 5 ): 4927 – 4945 . https://doi.org/10.1021/acs.chemrev.0c01057 .
- Hussain , M. , Jull , E.I.L. , Mandle , R.J. et al. ( 2021 ). Liquid crystal elastomers for biological applications . Nanomaterials 11 ( 3 ): 1 – 19 . https://doi.org/10.3390/nano11030813 .
- Lu , W. , Le , X. , Zhang , J. et al. ( 2017 ). Supramolecular shape memory hydrogels: a new bridge between stimuli-responsive polymers and supramolecular chemistry . Chemical Society Reviews 46 ( 5 ): 1284 – 1294 . https://doi.org/10.1039/c6cs00754f .
- Jiang , Z.C. , Xiao , Y.Y. , Kang , Y. et al. ( 2017 ). Shape memory polymers based on supramolecular interactions . ACS Applied Materials and Interfaces 9 ( 24 ): 20276 – 20293 . https://doi.org/10.1021/acsami.7b03624 .
-
Ruiz-Rubio , L.
,
Pérez-Álvarez , L.
,
Artetxe , B.
et al. (
2018
).
Shape memory hydrogels based on noncovalent interactions
. In:
Shape-Memory Materials
.
InTech
https://doi.org/10.5772/intechopen.78013
.
10.5772/intechopen.78013 Google Scholar
- Peng , S. , Sun , Y. , Ma , C. et al. ( 2022 ). Recent advances in dynamic covalent bond-based shape memory polymers . E-Polymers 22 ( 1 ): 285 – 300 . https://doi.org/10.1515/epoly-2022-0032 .
- Li , Z. , Yu , R. , and Guo , B. ( 2021 ). Shape-memory and self-healing polymers based on dynamic covalent bonds and dynamic noncovalent interactions: synthesis, mechanism, and application . ACS Applied Bio Materials 4 ( 8 ): 5926 – 5943 . https://doi.org/10.1021/acsabm.1c00606 .
- Li , L. , Peng , X. , Zhu , D. et al. ( 2023 ). Recent progress in polymers with dynamic covalent bonds . Macromolecular Chemistry and Physics https://doi.org/10.1002/macp.202300224 .
- Namathoti , S. , Ravindra , R.K. , and Rama , R.S. ( 2022 ). A review on progress in magnetic, microwave, ultrasonic responsive shape-memory polymer composites . Materials Today Proceedings 56 : 1182 – 1191 . https://doi.org/10.1016/j.matpr.2021.11.151 .
- Sun , X. , Agate , S. , Salem , K.S. et al. ( 2021 ). Hydrogel-based sensor networks: compositions, properties, and applications – a review . ACS Applied Bio Materials 4 ( 1 ): 140 – 162 . https://doi.org/10.1021/acsabm.0c01011 .
- Chan , B.Q.Y. , Low , Z.W.K. , Heng , S.J.W. et al. ( 2016 ). Recent advances in shape memory soft materials for biomedical applications . ACS Applied Materials and Interfaces 8 ( 16 ): 10070 – 10087 . https://doi.org/10.1021/acsami.6b01295 .
-
Herath , M.
,
Epaarachchi , J.
,
Islam , M.
et al. (
2020
).
Light activated shape memory polymers and composites: a review
.
European
Polymer Journal
136
:
https://doi.org/10.1016/j.eurpolymj.2020.109912
.
10.1016/j.eurpolymj.2020.109912 Google Scholar
- Shou , Q. , Uto , K. , Lin , W.C. et al. ( 2014 ). Near-infrared-irradiation-induced remote activation of surface shape-memory to direct cell orientations . Macromolecular Chemistry and Physics 215 ( 24 ): 2473 – 2481 . https://doi.org/10.1002/macp.201400353 .
- Chen , J. , Hamilton , L.E. , Mather , P.T. , and Henderson , J.H. ( 2022 ). Cell-responsive shape memory polymers . ACS Biomaterials Science & Engineering 8 ( 7 ): 2960 – 2969 . https://doi.org/10.1021/acsbiomaterials.2c00405 .
- Du , H. and Zhang , J. ( 2010 ). Solvent induced shape recovery of shape memory polymer based on chemically cross-linked poly(vinyl alcohol) . Soft Matter 6 ( 14 ): 3370 – 3376 . https://doi.org/10.1039/b922220k .
-
Basak , S.
and
Bandyopadhyay , A.
(
2021
).
Solvent responsive shape memory polymers—evolution, current status, and future outlook
.
Macromolecular Chemistry and Physics
222
(
19
):
https://doi.org/10.1002/macp.202100195
.
10.1002/macp.202100195 Google Scholar
- Han , X.J. , Dong , Z.Q. , Fan , M.M. et al. ( 2012 ). PH-induced shape-memory polymers . Macromolecular Rapid Communications 33 ( 12 ): 1055 – 1060 . https://doi.org/10.1002/marc.201200153 .
- Meng , H. , Zheng , J. , Wen , X.F. et al. ( 2015 ). pH- and sugar-induced shape memory hydrogel based on reversible phenylboronic acid-diol ester bonds . Macromolecular Rapid Communications 36 ( 6 ): 533 – 537 . https://doi.org/10.1002/marc.201400648 .
- Buffington , S.L. , Paul , J.E. , Ali , M.M. et al. ( 2019 ). Enzymatically triggered shape memory polymers . Acta Biomaterialia 84 : 88 – 97 . https://doi.org/10.1016/j.actbio.2018.11.031 .
- Kamiloglu , S. , Sari , G. , Ozdal , T. , and Capanoglu , E. ( 2020 ). Guidelines for cell viability assays . Food Frontiers 1 ( 3 ): 332 – 349 . https://doi.org/10.1002/fft2.44 .
- Haghjooy Javanmard , S. , Anari , J. , Zargar Kharazi , A. , and Vatankhah , E. ( 2016 ). In vitro hemocompatibility and cytocompatibility of a three-layered vascular scaffold fabricated by sequential electrospinning of PCL, collagen, and PLLA nanofibers . Journal of Biomaterials Applications 31 ( 3 ): 438 – 449 . https://doi.org/10.1177/0885328216652068 .
- He , T. , He , J. , Wang , Z. , and Cui , Z. ( 2021 ). Modification strategies to improve the membrane hemocompatibility in extracorporeal membrane oxygenator (ECMO) . Advanced Composites and Hybrid Materials 4 ( 4 ): 847 – 864 . https://doi.org/10.1007/s42114-021-00244-x .
- Salimi , E. , Ghaee , A. , Ismail , A.F. et al. ( 2016 ). Current approaches in improving hemocompatibility of polymeric membranes for biomedical application . Macromolecular Materials and Engineering 301 ( 7 ): 771 – 800 . https://doi.org/10.1002/mame.201600014 .
- Kumar Patel , K. and Purohit , R. ( 2019 ). Improved shape memory and mechanical properties of microwave-induced thermoplastic polyurethane/graphene nanoplatelets composites . Sensors and Actuators, A: Physical 285 : 17 – 24 . https://doi.org/10.1016/j.sna.2018.10.049 .
- Tan , L. , Gan , L. , Hu , J. et al. ( 2015 ). Functional shape memory composite nanofibers with graphene oxide filler . Composites Part A: Applied Science and Manufacturing 76 : 115 – 123 . https://doi.org/10.1016/j.compositesa.2015.04.015 .
- Hassanzadeh-Aghdam , M.K. , Ansari , R. , and Mahmoodi , M.J. ( 2019 ). Effective thermo-mechanical properties of shape memory polymer nanocomposites reinforced by carbon nanotubes . Mechanics of Materials 129 : 80 – 98 . https://doi.org/10.1016/j.mechmat.2018.11.009 .
-
Mahdi Rafiee , M.
,
Baniassadi , M.
,
Wang , K.
et al. (
2021
).
Mechanical properties improvement of shape memory polymers by designing the microstructure of multi-phase heterogeneous materials
.
Computational Materials Science
196
:
https://doi.org/10.1016/j.commatsci.2021.110523
.
10.1016/j.commatsci.2021.110523 Google Scholar
-
Son , K.H.
and
Lee , J.W.
(
2016
).
Synthesis and characterization of poly(ethylene glycol) based thermo-responsive hydrogels for cell sheet engineering
.
Materials
9
(
10
):
https://doi.org/10.3390/ma9100854
.
10.3390/ma9100854 Google Scholar
- Wu , W.X. , Huang , Y.C. , and Lee , W.F. ( 2020 ). Effect of poly(ethylene glycol)-derived crosslinkers on the properties of thermosensitive hydrogels . Iranian Polymer Journal 29 ( 8 ): 679 – 691 . https://doi.org/10.1007/s13726-020-00831-7 .
- Woodard , L.N. , Kmetz , K.T. , Roth , A.A. et al. ( 2017 ). Porous poly(ϵ-caprolactone)-poly(l-lactic acid) semi-interpenetrating networks as superior, defect-specific scaffolds with potential for cranial bone defect repair . Biomacromolecules 18 ( 12 ): 4075 – 4083 . https://doi.org/10.1021/acs.biomac.7b01155 .
-
Subramaniam , A.
and
Sethuraman , S.
(
2014
).
Chapter 18 – Biomedical applications of nondegradable polymers
. In:
Natural and Synthetic Biomedical Polymers
(ed.
S.G. Kumbar
,
C.T. Laurencin
, and
M. Deng
).
Elsevier
.
10.1016/B978-0-12-396983-5.00019-3 Google Scholar
- Lyu , S.P. and Untereker , D. ( 2009 ). Degradability of polymers for implantable biomedical devices . International Journal of Molecular Sciences 10 ( 9 ): 4033 – 4065 . https://doi.org/10.3390/ijms10094033 .
- Bikiaris , D.N. ( 2013 ). Nanocomposites of aliphatic polyesters: an overview of the effect of different nanofillers on enzymatic hydrolysis and biodegradation of polyesters . Polymer Degradation and Stability 98 ( 9 ): 1908 – 1928 . https://doi.org/10.1016/j.polymdegradstab.2013.05.016 .
-
Tajvar , S.
,
Hadjizadeh , A.
, and
Samandari , S.S.
(
2023
).
Scaffold degradation in bone tissue engineering: an overview
.
International Biodeterioration and Biodegradation
180
:
https://doi.org/10.1016/j.ibiod.2023.105599
.
10.1016/j.ibiod.2023.105599 Google Scholar
- Flores-Jiménez , M.S. , Garcia-Gonzalez , A. , and Fuentes-Aguilar , R.Q. ( 2023 ). Review on porous scaffolds generation process: a tissue engineering approach . ACS Applied Bio Materials 6 ( 1 ): 1 – 23 . https://doi.org/10.1021/acsabm.2c00740 .
- Lutzweiler , G. , Halili , A.N. , and Vrana , N.E. ( 2020 ). The overview of porous, bioactive scaffolds as instructive biomaterials for tissue regeneration and their clinical translation . Pharmaceutics 12 ( 7 ): 1 – 29 . https://doi.org/10.3390/pharmaceutics12070602 .
-
Kramschuster , A.
and
Turng , L.S.
(
2013
).
Fabrication of tissue engineering scaffolds
. In:
Handbook of Biopolymers and
Biodegradable Plastics: Properties, Processing and Applications
,
427
–
446
.
Elsevier Inc.
https://doi.org/10.1016/B978-1-4557-2834-3.00017-3
.
10.1016/B978-1-4557-2834-3.00017-3 Google Scholar
- Loh , Q.L. and Choong , C. ( 2013 ). Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size . Tissue Engineering, Part B: Reviews 19 ( 6 ): 485 – 502 . https://doi.org/10.1089/ten.teb.2012.0437 .
- Murphy , C.M. and O'Brien , F.J. ( 2010 ). Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds . Cell Adhesion & Migration 4 ( 3 ): 377 – 381 . https://doi.org/10.4161/cam.4.3.11747 .
- Abdelaziz , A.G. , Nageh , H. , Abdo , S.M. et al. ( 2023 ). A review of 3D polymeric scaffolds for bone tissue engineering: principles, fabrication techniques, immunomodulatory roles, and challenges . Bioengineering 10 ( 2 ): https://doi.org/10.3390/bioengineering10020204 .
-
Suh , T.C.
,
Amanah , A.Y.
, and
Gluck , J.M.
(
2020
).
Electrospun scaffolds and induced pluripotent stem cell-derived cardiomyocytes for cardiac tissue engineering applications
.
Bioengineering
7
(
3
):
1
–
22
.
https://doi.org/10.3390/bioengineering7030105
.
10.3390/bioengineering7030105 Google Scholar
-
Villanueva-Flores , F.
,
Garcia-Atutxa , I.
,
Santos , A.
, and
Armendariz-Borunda , J.
(
2023
).
Toward a new generation of bio-scaffolds for neural tissue engineering: challenges and perspectives
.
Pharmaceutics
15
(
6
):
https://doi.org/10.3390/pharmaceutics15061750
.
10.3390/pharmaceutics15061750 Google Scholar
- Tipnis , N.P. and Burgess , D.J. ( 2018 ). Sterilization of implantable polymer-based medical devices: a review . International Journal of Pharmaceutics 544 ( 2 ): 455 – 460 . https://doi.org/10.1016/j.ijpharm.2017.12.003 .
-
Pisani , S.
,
Calcaterra , V.
,
Croce , S.
et al. (
2022a
).
Shape memory engineered scaffold (SMES) for potential repair of neural tube defects
.
Reactive and Functional Polymers
173
:
https://doi.org/10.1016/j.reactfunctpolym.2022.105223
.
10.1016/j.reactfunctpolym.2022.105223 Google Scholar
-
Pisani , S.
,
Genta , I.
,
Modena , T.
et al. (
2022b
).
Shape-memory polymers hallmarks and their biomedical applications in the form of nanofibers
.
International Journal of Molecular Sciences
23
(
3
):
https://doi.org/10.3390/ijms23031290
.
10.3390/ijms23031290 Google Scholar
- Yakacki , C.M. , Lyons , M.B. , Rech , B. et al. ( 2008 ). Cytotoxicity and thermomechanical behavior of biomedical shape-memory polymer networks post-sterilization . Biomedical Materials 3 ( 1 ): https://doi.org/10.1088/1748-6041/3/1/015010 .
- Savaris , M. , dos Santos , V. , and Brandalise , R.N. ( 2016 ). Influence of different sterilization processes on the properties of commercial poly(lactic acid) . Materials Science and Engineering C 69 : 661 – 667 . https://doi.org/10.1016/j.msec.2016.07.031 .
- Herczeg , C.K. and Song , J. ( 2022 ). Sterilization of polymeric implants: challenges and opportunities . ACS Applied Bio Materials 5 ( 11 ): 5077 – 5088 . https://doi.org/10.1021/acsabm.2c00793 .
- Muschalek , R. , Nash , L. , Jones , R. et al. ( 2017 ). Effects of sterilization on shape memory polyurethane embolic foam devices . Journal of Medical Devices 11 ( 3 ): https://doi.org/10.1115/1.4037052 .
-
Basak , S.
and
Bandyopadhyay , A.
(
2022
).
Two-way semicrystalline shape memory elastomers: development and current research
trends
.
Advanced Engineering Materials
24
(
10
):
https://doi.org/10.1002/adem.202200257
.
10.1002/adem.202200257 Google Scholar
- Xuan , H. , Hu , H. , Geng , C. et al. ( 2020 ). Biofunctionalized chondrogenic shape-memory ternary scaffolds for efficient cell-free cartilage regeneration . Acta Biomaterialia 105 : 97 – 110 . https://doi.org/10.1016/j.actbio.2020.01.015 .
-
Zhao , X.
,
Jin , L.
,
Shi , H.
et al. (
2020
).
Recent advances of designing dynamic surfaces to regulate cell adhesion
.
Colloid and Interface Science Communications
35
:
https://doi.org/10.1016/j.colcom.2020.100249
.
10.1016/j.colcom.2020.100249 Google Scholar
- Muzzio , N. , Moya , S. , and Romero , G. ( 2021 ). Multifunctional scaffolds and synergistic strategies in tissue engineering and regenerative medicine . Pharmaceutics 13 ( 6 ): https://doi.org/10.3390/pharmaceutics13060792 .
- Florencio-Silva , R. , Sasso , G.R.D.S. , Sasso-Cerri , E. et al. ( 2015 ). Biology of bone tissue: structure, function, and factors that influence bone cells . BioMed Research International 2015 : https://doi.org/10.1155/2015/421746 .
- Qu , H. , Fu , H. , Han , Z. , and Sun , Y. ( 2019 ). Biomaterials for bone tissue engineering scaffolds: a review . RSC Advances 9 : 26252 – 26245 , 26262 . https://doi.org/10.1039/c9ra05214c .
- Koons , G.L. , Diba , M. , and Mikos , A.G. ( 2020 ). Materials design for bone-tissue engineering . Nature Reviews Materials 5 ( 8 ): 584 – 603 . https://doi.org/10.1038/s41578-020-0204-2 .
- Ansari , M. ( 2019 ). Bone tissue regeneration: biology, strategies and interface studies . Progress in Biomaterials 8 ( 4 ): 223 – 237 . https://doi.org/10.1007/s40204-019-00125-z .
-
Tariverdian , T.
,
Sefat , F.
,
Gelinsky , M.
, and
Mozafari , M.
(
2019
).
Scaffold for bone tissue engineering
. In:
Handbook of Tissue Engineering Scaffolds: Volume One
,
189
–
209
.
Elsevier
https://doi.org/10.1016/B978-0-08-102563-5.00010-1
.
10.1016/B978-0-08-102563-5.00010-1 Google Scholar
- Bergemann , C. , Duske , K. , Nebe , J.B. et al. ( 2015 ). Microstructured zirconia surfaces modulate osteogenic marker genes in human primary osteoblasts . Journal of Materials Science: Materials in Medicine 26 ( 1 ): 1 – 11 . https://doi.org/10.1007/s10856-014-5350-x .
- Hatano , K. , Inoue , H. , Kojo , T. et al. ( 1999 ). Effect of surface roughness on proliferation and alkaline phosphatase expression of rat calvarial cells cultured on polystyrene . Bone 25 : 439 – 445 .
- Kadow-Romacker , A. , Hoffmann , J.E. , Duda , G. et al. ( 2009 ). Effect of mechanical stimulation on osteoblast- and osteoclast-like cells in vitro . Cells, Tissues, Organs 190 ( 2 ): 61 – 68 . https://doi.org/10.1159/000178022 .
-
Hu , L.
,
Yin , C.
,
Zhao , F.
et al. (
2018
).
Mesenchymal stem cells: cell fate decision to osteoblast or adipocyte and application in osteoporosis treatment
.
International Journal of Molecular Sciences
19
(
2
):
https://doi.org/10.3390/ijms19020360
.
10.3390/ijms19020360 Google Scholar
-
Cao , S.
,
Zhao , Y.
,
Hu , Y.
et al. (
2020
).
New perspectives: in-situ tissue engineering for bone repair scaffold
.
Composites Part B: Engineering
202
:
https://doi.org/10.1016/j.compositesb.2020.108445
.
10.1016/j.compositesb.2020.108445 Google Scholar
- Fernandez-Yague , M.A. , Abbah , S.A. , McNamara , L. et al. ( 2015 ). Biomimetic approaches in bone tissue engineering: integrating biological and physicomechanical strategies . Advanced Drug Delivery Reviews 84 : 1 – 29 . https://doi.org/10.1016/j.addr.2014.09.005 .
- Bose , S. , Roy , M. , and Bandyopadhyay , A. ( 2012 ). Recent advances in bone tissue engineering scaffolds . Trends in Biotechnology 30 ( 10 ): 546 – 554 . https://doi.org/10.1016/j.tibtech.2012.07.005 .
- Alonzo , M. , AnilKumar , S. , Roman , B. et al. ( 2019 ). 3D bioprinting of cardiac tissue and cardiac stem cell therapy . Translational Research 211 : 64 – 83 . https://doi.org/10.1016/j.trsl.2019.04.004 .
- Chen , S. and Cohen , S. ( 2022 ). Principles of cardiovascular tissue engineering . In: Tissue Engineering , 3 e, 629 – 660 . Elsevier https://doi.org/10.1016/B978-0-12-824459-3.00018-4 .
- Montero , P. , Flandes-Iparraguirre , M. , Musquiz , S. et al. ( 2020 ). Cells, materials, and fabrication processes for cardiac tissue engineering . Frontiers in Bioengineering and Biotechnology 8 : https://doi.org/10.3389/fbioe.2020.00955 .
-
Roacho-Pérez , J.A.
,
Garza-Treviño , E.N.
,
Moncada-Saucedo , N.K.
et al. (
2022
).
Artificial scaffolds in cardiac tissue engineering
.
Life
12
(
8
):
https://doi.org/10.3390/life12081117
.
10.3390/life12081117 Google Scholar
- Flores-Rojas , G.G. , Gómez-Lazaro , B. , López-Saucedo , F. et al. ( 2023 ). Electrospun scaffolds for tissue engineering: a review . Macromolecules 3 ( 3 ): 524 – 553 . https://doi.org/10.3390/macromol3030031 .
- Lewandowski , J. , Kolanowski , T.J. , and Kurpisz , M. ( 2017 ). Techniques for the induction of human pluripotent stem cell differentiation towards cardiomyocytes . Journal of Tissue Engineering and Regenerative Medicine 11 ( 5 ): 1658 – 1674 . https://doi.org/10.1002/term.2117 .
- Dattola , E. , Parrotta , E.I. , Scalise , S. et al. ( 2019 ). Development of 3D PVA scaffolds for cardiac tissue engineering and cell screening applications . RSC Advances 9 ( 8 ): 4246 – 4257 . https://doi.org/10.1039/C8RA08187E .
-
Nguyen , A.H.
,
Marsh , P.
,
Schmiess-Heine , L.
et al. (
2019
).
Cardiac tissue engineering: state-of-the-art methods and outlook
.
Journal of Biological Engineering
13
(
1
):
https://doi.org/10.1186/s13036-019-0185-0
.
10.1186/s13036-019-0185-0 Google Scholar
- Boroumand , S. , Haeri , A. , Nazeri , N. , and Rabbani , S. ( 2021 ). Review insights in cardiac tissue engineering: cells, scaffolds and pharmacological agents . Iranian Journal of Pharmaceutical Research 20 ( 4 ): 467 – 496 . https://doi.org/10.22037/IJPR.2021.114730.15012 .
- Faust , H.J. , Guo , Q. , and Elisseeff , J.H. ( 2018 ). Cartilage tissue engineering . In: Principles of Regenerative Medicine , 937 – 952 . Elsevier https://doi.org/10.1016/B978-0-12-809880-6.00053-9 .
- Eslahi , N. , Abdorahim , M. , and Simchi , A. ( 2016 ). Smart polymeric hydrogels for cartilage tissue engineering: a review on the chemistry and biological functions . Biomacromolecules 17 ( 11 ): 3441 – 3463 . https://doi.org/10.1021/acs.biomac.6b01235 .
- Mollon , B. , Kandel , R. , Chahal , J. , and Theodoropoulos , J. ( 2013 ). The clinical status of cartilage tissue regeneration in humans . Osteoarthritis and Cartilage 21 ( 12 ): 1824 – 1833 . https://doi.org/10.1016/j.joca.2013.08.024 .
- Chung , C. and Burdick , J.A. ( 2008 ). Engineering cartilage tissue . Advanced Drug Delivery Reviews 60 ( 2 ): 243 – 262 . https://doi.org/10.1016/j.addr.2007.08.027 .
- Armiento , A.R. , Stoddart , M.J. , Alini , M. , and Eglin , D. ( 2018 ). Biomaterials for articular cartilage tissue engineering: learning from biology . Acta Biomaterialia 65 : 1 – 20 . https://doi.org/10.1016/j.actbio.2017.11.021 .
-
Ai , J.
,
Kiasat-Dolatabadi , A.
,
Ebrahimi-Barough , S.
et al. (
2013
).
Polymeric scaffolds in neural tissue engineering: a review
.
Archives of Neuroscience
1
(
1
):
15
–
20
.
https://doi.org/10.5812/archneurosci.9144
.
10.5812/archneurosci.9144 Google Scholar
-
Xiang , L.
and
Cui , W.
(
2021
).
Biomedical application of photo-crosslinked gelatin hydrogels
.
Journal of Leather Science and Engineering
3
(
1
):
https://doi.org/10.1186/s42825-020-00043-y
.
10.1186/s42825-020-00043-y Google Scholar
- Papadimitriou , L. , Manganas , P. , Ranella , A. , and Stratakis , E. ( 2020 ). Biofabrication for neural tissue engineering applications . Materials Today Bio 6 : https://doi.org/10.1016/j.mtbio.2020.100043 .
- Wang , T.Y. , Forsythe , J.S. , Parish , C.L. , and Nisbet , D.R. ( 2012 ). Biofunctionalisation of polymeric scaffolds for neural tissue engineering. In . Journal of Biomaterials Applications 27 ( 4 ): 369 – 390 . https://doi.org/10.1177/0885328212443297 .
-
Doblado , L.R.
,
Martínez-Ramos , C.
, and
Pradas , M.M.
(
2021
).
Biomaterials for neural tissue engineering
.
Frontiers in Nanotechnology
3
:
https://doi.org/10.3389/fnano.2021.643507
.
10.3389/fnano.2021.643507 Google Scholar
- Willerth , S.M. and Sakiyama-Elbert , S.E. ( 2007 ). Approaches to neural tissue engineering using scaffolds for drug delivery . Advanced Drug Delivery Reviews 59 ( 4–5 ): 325 – 338 . https://doi.org/10.1016/j.addr.2007.03.014 .
- Yu , L.M.Y. , Miller , F.D. , and Shoichet , M.S. ( 2010 ). The use of immobilized neurotrophins to support neuron survival and guide nerve fiber growth in compartmentalized chambers . Biomaterials 31 ( 27 ): 6987 – 6999 . https://doi.org/10.1016/j.biomaterials.2010.05.070 .
- Leipzig , N.D. , Wylie , R.G. , Kim , H. , and Shoichet , M.S. ( 2011 ). Differentiation of neural stem cells in three-dimensional growth factor-immobilized chitosan hydrogel scaffolds . Biomaterials 32 ( 1 ): 57 – 64 . https://doi.org/10.1016/j.biomaterials.2010.09.031 .
- Willerth , S.M. , Arendas , K.J. , Gottlieb , D.I. , and Sakiyama-Elbert , S.E. ( 2006 ). Optimization of fibrin scaffolds for differentiation of murine embryonic stem cells into neural lineage cells . Biomaterials 27 : 5990 – 6003 .
-
Zhao , D.
,
Wang , X.
,
Cheng , B.
et al. (
2022
).
Degradation-kinetics-controllable and tissue-regeneration-matchable photocross-linked alginate hydrogels for bone repair
.
ACS Applied Materials and Interfaces
https://doi.org/10.1021/acsami.2c01739
.
10.1021/acsami.2c01739 Google Scholar
- Gu , X. , Ding , F. , and Williams , D.F. ( 2014 ). Neural tissue engineering options for peripheral nerve regeneration . Biomaterials 35 ( 24 ): 6143 – 6156 . https://doi.org/10.1016/j.biomaterials.2014.04.064 .
- Chen , C. , Hu , J. , Huang , H. et al. ( 2016 ). Design of a smart nerve conduit based on a shape-memory polymer . Advanced Materials Technologies 1 ( 4 ): https://doi.org/10.1002/admt.201600015 .
- Luo , K. , Wang , L. , Wang , M.X. et al. ( 2023 ). 4D printing of biocompatible scaffolds via in situ photo-crosslinking from shape memory copolyesters . ACS Applied Materials and Interfaces 15 ( 37 ): 44373 – 44383 . https://doi.org/10.1021/acsami.3c10747 .
-
Zulkifli , Z.
,
Tan , J.J.
,
Ku Marsilla , K.I.
et al. (
2022
).
Shape memory poly (glycerol sebacate)-based electrospun fiber scaffolds for tissue engineering applications: a review
.
Journal of Applied Polymer Science
139
(
22
):
1
–
16
.
https://doi.org/10.1002/app.52272
.
10.1002/app.52272 Google Scholar
- Zhang , D. , George , O.J. , Petersen , K.M. et al. ( 2014 ). A bioactive “self-fitting” shape memory polymer scaffold with potential to treat cranio-maxillo facial bone defects . Acta Biomaterialia 10 ( 11 ): 4597 – 4605 . https://doi.org/10.1016/j.actbio.2014.07.020 .
- Stukel Shah , J.M. , Lundquist , B. , Macaitis , J. et al. ( 2022 ). Comparative evaluation of mesenchymal stromal cell growth and osteogenic differentiation on a shape memory polymer scaffold . Journal of Biomedical Materials Research, Part B: Applied Biomaterials 110 ( 9 ): 2063 – 2074 . https://doi.org/10.1002/jbm.b.35061 .
- Beltran , F.O. , Houk , C.J. , and Grunlan , M.A. ( 2021 ). Bioactive siloxane-containing shape-memory polymer (SMP) scaffolds with tunable degradation rates . ACS Biomaterials Science & Engineering 7 ( 4 ): 1631 – 1639 . https://doi.org/10.1021/acsbiomaterials.1c00113 .
- Tseng , L.F. , Mather , P.T. , and Henderson , J.H. ( 2013 ). Shape-memory-actuated change in scaffold fiber alignment directs stem cell morphology . Acta Biomaterialia 9 ( 11 ): 8790 – 8801 . https://doi.org/10.1016/j.actbio.2013.06.043 .
- Tatu , R. , Oria , M. , Pulliam , S. et al. ( 2019 ). Using poly(l-lactic acid) and poly(ϵ-caprolactone) blends to fabricate self-expanding, watertight and biodegradable surgical patches for potential fetoscopic myelomeningocele repair . Journal of Biomedical Materials Research, Part B: Applied Biomaterials 107 ( 2 ): 295 – 305 . https://doi.org/10.1002/jbm.b.34121 .
-
Pandey , H.
,
Mohol , S.S.
, and
Kandi , R.
(
2022
).
4D printing of tracheal scaffold using shape-memory polymer composite
.
Materials Letters
329
:
https://doi.org/10.1016/j.matlet.2022.133238
.
10.1016/j.matlet.2022.133238 Google Scholar
-
Mi , S.
,
Hu , X.
,
Lin , Z.
et al. (
2021
).
Shape memory PLLA-TMC/CSH-dPA microsphere scaffolds with mechanical and bioactive enhancement for bone tissue engineering
.
Colloids and Surfaces A: Physicochemical and Engineering Aspects
622
:
https://doi.org/10.1016/j.colsurfa.2021.126594
.
10.1016/j.colsurfa.2021.126594 Google Scholar
- Han , L. , Wang , Y. , Wu , L. et al. ( 2023 ). Effects of chemical composition on the shape memory property of poly( d l -lactide- co -trimethylene carbonate) as self-morphing small-diameter vascular scaffolds . ACS Biomaterials Science & Engineering 9 ( 1 ): 520 – 530 . https://doi.org/10.1021/acsbiomaterials.2c01345 .
- Hu , X. , He , J. , Yong , X. et al. ( 2020 ). Biodegradable poly (lactic acid-co-trimethylene carbonate)/chitosan microsphere scaffold with shape-memory effect for bone tissue engineering . Colloids and Surfaces B: Biointerfaces 195 : https://doi.org/10.1016/j.colsurfb.2020.111218 .
- Hu , X. , Zhao , W. , Zhang , Z. et al. ( 2023 ). Novel 3D printed shape-memory PLLA-TMC/GA-TMC scaffolds for bone tissue engineering with the improved mechanical properties and degradability . Chinese Chemical Letters 34 ( 1 ): 107451 . https://doi.org/10.1016/j.cclet.2022.04.049 .
- Luo , K. , Wang , L. , Tang , J. et al. ( 2021 ). Enhanced biomineralization of shape memory composite scaffolds from citrate functionalized amorphous calcium phosphate for bone repair . Journal of Materials Chemistry B 9 ( 44 ): 9191 – 9203 . https://doi.org/10.1039/d1tb01554k .
- Shaabani , A. and Sedghi , R. ( 2021 ). Preparation of chitosan biguanidine/PANI-containing self-healing semi-conductive waterborne scaffolds for bone tissue engineering . Carbohydrate Polymers 264 : https://doi.org/10.1016/j.carbpol.2021.118045 .
-
Shaabani , A.
,
Sedghi , R.
,
Motasadizadeh , H.
, and
Dinarvand , R.
(
2021
).
Self-healable conductive polyurethane with the body temperature-responsive shape memory for bone tissue engineering
.
Chemical Engineering Journal
411
:
https://doi.org/10.1016/j.cej.2021.128449
.
10.1016/j.cej.2021.128449 Google Scholar
- Bil , M. , Kijeńska-Gawrońska , E. , Głodkowska-Mrówka , E. et al. ( 2020 ). Design and in vitro evaluation of electrospun shape memory polyurethanes for self-fitting tissue engineering grafts and drug delivery systems . Materials Science and Engineering C 110 : https://doi.org/10.1016/j.msec.2020.110675 .
- Fu , C.Y. , Chuang , W.T. , and Hsu , S.H. ( 2021 ). A biodegradable chitosan-polyurethane cryogel with switchable shape memory . ACS Applied Materials and Interfaces 13 ( 8 ): 9702 – 9713 . https://doi.org/10.1021/acsami.0c21940 .
-
Wang , L.
,
Zeng , X.
,
Chen , X.
et al. (
2022
).
Programmable, biodegradable composite scaffolds with variable pore morphology for minimal invasive bone repair
.
Composites Part A: Applied Science and Manufacturing
162
:
https://doi.org/10.1016/j.compositesa.2022.107130
.
10.1016/j.compositesa.2022.107130 Google Scholar
- Ramaraju , H. , Massarella , D. , Wong , C. et al. ( 2023 ). Percutaneous delivery and degradation of a shape memory elastomer poly(glycerol dodecanedioate) in porcine pulmonary arteries . Biomaterials 293 ( July 2022 ): 121950 . https://doi.org/10.1016/j.biomaterials.2022.121950 .
- Akman , R. , Ramaraju , H. , Verga , A. , and Hollister , S.J. ( 2022 ). Multimodal 3D printing of biodegradable shape memory elastomer resins for patient specific soft tissue repair . Applied Materials Today 29 ( May ): 101666 . https://doi.org/10.1016/j.apmt.2022.101666 .
- Zhang , D. , Giese , M.L. , Prukop , S.L. , and Grunlan , M.A. ( 2011 ). Poly(ϵ-caprolactone)-based shape memory polymers with variable polydimethylsiloxane soft segment lengths . Journal of Polymer Science, Part A: Polymer Chemistry 49 ( 3 ): 754 – 761 . https://doi.org/10.1002/pola.24488 .
-
Hsieh , C.H.
,
Razali , N.A.M.
,
Lin , W.C.
et al. (
2020
).
Development of thermo-responsive polycaprolactone–polydimethylsiloxane shrinkable nanofibre mesh
.
Nanomaterials
10
(
7
):
1
–
13
.
https://doi.org/10.3390/nano10071427
.
10.3390/nano10071427 Google Scholar
- Oria , M. , Tatu , R.R. , Lin , C.Y. , and Peiro , J.L. ( 2019 ). In vivo evaluation of novel PLA/PCL polymeric patch in rats for potential spina bifida coverage . Journal of Surgical Research 242 : 62 – 69 . https://doi.org/10.1016/j.jss.2019.04.035 .
- Zhang , F. , Xia , Y. , Liu , Y. , and Leng , J. ( 2020 ). Nanoscale Horizons 5 : 1155 – 1173 . https://doi.org/10.1039/D0NH00246A .
-
Mertz , D.
,
Harlepp , S.
,
Goetz , J.
et al. (
2020
).
Nanocomposite polymer scaffolds responding under external stimuli for drug delivery and tissue engineering applications
.
Advanced Therapeutics
3
(
2
):
https://doi.org/10.1002/adtp.201900143
.
10.1002/adtp.201900143 Google Scholar
-
Zhao , W.
,
Huang , Z.
,
Liu , L.
et al. (
2021
).
Porous bone tissue scaffold concept based on shape memory PLA/Fe
3
O
4
.
Composites Science and Technology
203
:
https://doi.org/10.1016/j.compscitech.2020.108563
.
10.1016/j.compscitech.2020.108563 Google Scholar
-
Zhou , W.
,
Dong , X.
,
He , Y.
et al. (
2022
).
In-vitro and in-vivo studies of 4D printed shape memory scaffolds with bioactive fillers and coating for enhanced bone tissue regeneration
.
Smart Materials and Structures
31
(
10
):
https://doi.org/10.1088/1361-665X/ac884a
.
10.1088/1361-665X/ac884a Google Scholar
- Singh , G. , Singh , S. , Prakash , C. et al. ( 2020 ). Characterization of three-dimensional printed thermal-stimulus polylactic acid-hydroxyapatite-based shape memory scaffolds . Polymer Composites 41 ( 9 ): 3871 – 3891 . https://doi.org/10.1002/pc.25683 .
- Xie , M. , Wang , L. , Ge , J. et al. ( 2015 ). Strong electroactive biodegradable shape memory polymer networks based on star-shaped polylactide and aniline trimer for bone tissue engineering . ACS Applied Materials and Interfaces 7 ( 12 ): 6772 – 6781 . https://doi.org/10.1021/acsami.5b00191 .
- Toncheva , A. , Khelifa , F. , Paint , Y. et al. ( 2018 ). Fast IR-actuated shape-memory polymers using in situ silver nanoparticle-grafted cellulose nanocrystals . ACS Applied Materials and Interfaces 10 ( 35 ): 29933 – 29942 . https://doi.org/10.1021/acsami.8b10159 .
-
Kovaleva , P.A.
,
Pariy , I.O.
,
Chernozem , R.V.
et al. (
2022
).
Shape memory effect in hybrid polylactide-based polymer scaffolds functionalized with reduced graphene oxide for tissue engineering
.
European Polymer Journal
181
:
https://doi.org/10.1016/j.eurpolymj.2022.111694
.
10.1016/j.eurpolymj.2022.111694 Google Scholar
- Zhao , X. , Dong , R. , Guo , B. , and Ma , P.X. ( 2017 ). Dopamine-incorporated dual bioactive electroactive shape memory polyurethane elastomers with physiological shape recovery temperature, high stretchability, and enhanced C2C12 myogenic differentiation . ACS Applied Materials and Interfaces 9 ( 35 ): 29595 – 29611 . https://doi.org/10.1021/acsami.7b10583 .
-
Wang , C.
,
Yue , H.
,
Liu , J.
et al. (
2020
).
Advanced reconfigurable scaffolds fabricated by 4D printing for treating critical-size bone defects of irregular shapes
.
Biofabrication
12
(
4
):
https://doi.org/10.1088/1758-5090/abab5b
.
10.1088/1758-5090/abab5b Google Scholar
-
Yang , C.
,
Zheng , R.
,
Younis , M.R.
et al. (
2021
).
NIR-II light-responsive biodegradable shape memory composites based on cuprorivaite nanosheets for enhanced tissue reconstruction
.
Chemical Engineering Journal
419
:
https://doi.org/10.1016/j.cej.2021.129437
.
10.1016/j.cej.2021.129437 Google Scholar
- Xie , H. , Shao , J. , Ma , Y. et al. ( 2018 ). Biodegradable near-infrared-photoresponsive shape memory implants based on black phosphorus nanofillers . Biomaterials 164 : 11 – 21 . https://doi.org/10.1016/j.biomaterials.2018.02.040 .
- Zhang , Y. , Li , C. , Zhang , W. et al. ( 2022 ). 3D-printed NIR-responsive shape memory polyurethane/magnesium scaffolds with tight-contact for robust bone regeneration . Bioactive Materials 16 : 218 – 231 . https://doi.org/10.1016/j.bioactmat.2021.12.032 .
- Zhang , H. and Zhao , Y. ( 2013 ). Polymers with dual light-triggered functions of shape memory and healing using gold nanoparticles . ACS Applied Materials and Interfaces 5 ( 24 ): 13069 – 13075 . https://doi.org/10.1021/am404087q .
-
Wang , L.
,
Qiu , Y.
,
Lv , H.
et al. (
2019
).
3D superelastic scaffolds constructed from flexible inorganic nanofibers with self-fitting capability and tailorable gradient for bone regeneration
.
Advanced Functional Materials
29
(
31
):
https://doi.org/10.1002/adfm.201901407
.
10.1002/adfm.201901407 Google Scholar
- Wang , J. , Li , X. , Song , Y. et al. ( 2021 ). Injectable silk sericin scaffolds with programmable shape-memory property and neuro-differentiation-promoting activity for individualized brain repair of severe ischemic stroke . Bioactive Materials 6 ( 7 ): 1988 – 1999 . https://doi.org/10.1016/j.bioactmat.2020.12.017 .
- Dai , W. , Guo , H. , Gao , B. et al. ( 2019 ). Double network shape memory hydrogels activated by near-infrared with high mechanical toughness, nontoxicity, and 3D printability . Chemical Engineering Journal 356 : 934 – 949 . https://doi.org/10.1016/j.cej.2018.09.078 .
- Gyarmati , B. , Szilágyi , B.Á. , and Szilágyi , A. ( 2017 ). Reversible interactions in self-healing and shape memory hydrogels . European Polymer Journal 93 : 642 – 669 . https://doi.org/10.1016/j.eurpolymj.2017.05.020 .
- Xu , X. , Davis , K.A. , Yang , P. et al. ( 2011 ). Shape memory RGD-containing networks: synthesis, characterization, and application in cell culture . Macromolecular Symposia 309–310 ( 1 ): 162 – 172 . https://doi.org/10.1002/masy.201100060 .
- Kim , N.E. , Park , S. , Kim , S. et al. ( 2023 ). Development of gelatin-based shape-memory polymer scaffolds with fast responsive performance and enhanced mechanical properties for tissue engineering applications . ACS Omega 8 ( 7 ): 6455 – 6462 . https://doi.org/10.1021/acsomega.2c06730 .
- Jiang , L.B. , Su , D.H. , Liu , P. et al. ( 2018 ). Shape-memory collagen scaffold for enhanced cartilage regeneration: native collagen versus denatured collagen . Osteoarthritis and Cartilage 26 ( 10 ): 1389 – 1399 . https://doi.org/10.1016/j.joca.2018.06.004 .
- Guillaume , O. , Naqvi , S.M. , Lennon , K. , and Buckley , C.T. ( 2015 ). Enhancing cell migration in shape-memory alginate-collagen composite scaffolds: in vitro and ex vivo assessment for intervertebral disc repair . Journal of Biomaterials Applications 29 ( 9 ): 1230 – 1246 . https://doi.org/10.1177/0885328214557905 .
- Liang , R. , Wang , L. , Yu , H. et al. ( 2019 ). Molecular design, synthesis and biomedical applications of stimuli-responsive shape memory hydrogels . European Polymer Journal 114 : 380 – 396 . https://doi.org/10.1016/j.eurpolymj.2019.03.004 .
- Nan , W. , Wang , W. , Gao , H. , and Liu , W. ( 2013 ). Fabrication of a shape memory hydrogel based on imidazole-zinc ion coordination for potential cell-encapsulating tubular scaffold application . Soft Matter 9 ( 1 ): 132 – 137 . https://doi.org/10.1039/c2sm26918j .
-
Han , Y.
,
Bai , T.
, and
Liu , W.
(
2014
).
Controlled heterogeneous stem cell differentiation on a shape memory hydrogel surface
.
Scientific Reports
4
:
https://doi.org/10.1038/srep05815
.
10.1038/srep05815 Google Scholar
- Wang , Y. , Miao , Y. , Zhang , J. et al. ( 2018 ). Three-dimensional printing of shape memory hydrogels with internal structure for drug delivery . Materials Science and Engineering C 84 : 44 – 51 . https://doi.org/10.1016/j.msec.2017.11.025 .
- Song , X. , Guo , J. , Liu , Y. et al. ( 2022 ). Preparation and characterization of multi-network hydrogels based on sodium alginate/krill protein/polyacrylamide—strength, shape memory, conductivity and biocompatibility . International Journal of Biological Macromolecules 207 : 140 – 151 . https://doi.org/10.1016/j.ijbiomac.2022.03.015 .