One-Dimensional Si Nanostructure-Based Hybrid Systems: Surface-Enhanced R aman Spectroscopy and Photodetector Applications
Prajith Karadan
1 Paul Scherrer Institute, Laboratory for X-ray Nanoscience and Technologies, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
Search for more papers by this authorArvind Kumar
2 Chaman Lal Mahavidyalaya, Department of Physics, Haridwar, 247664 India
Search for more papers by this authorPrajith Karadan
1 Paul Scherrer Institute, Laboratory for X-ray Nanoscience and Technologies, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
Search for more papers by this authorArvind Kumar
2 Chaman Lal Mahavidyalaya, Department of Physics, Haridwar, 247664 India
Search for more papers by this authorArvind Kumar
Chaman Lal Mahavidyalaya, Department of Physics, Haridwar, 247664 India
Search for more papers by this authorSummary
1D-semiconductor nanomaterial-based hybrids exhibit outstanding optical, electronic, and mechanical properties, which lead to various potential applications in nanoelectronics, optoelectronics, nanophotonics, chemical, and biosensors. Si nanostructure-based hybrids, in particular, have emerged as an exceptional hybrid system due to its compatibility with currently existing semiconductor technology and the ability of miniaturization in microelectronics. This chapter represents the fabrication and the applications of Si nanostructure-based hybrids in surface-enhanced Raman spectroscopy (SERS) and photodetectors.
References
- Tan , C. , Chen , J. , Wu , X.J. , and Zhang , H. ( 2018 ). Epitaxial growth of hybrid nanostructures . Nat. Rev. Mater. 3 : 1 – 13 .
- Huang , X. , Tan , C. , Yin , Z. , and Zhang , H. ( 2014 ). 25th anniversary article: hybrid nanostructures based on two-dimensional nanomaterials . Adv. Mater. 26 ( 14 ): 2185 – 2204 .
- Garnett , E. , Mai , L. , and Yang , P. ( 2019 ). Introduction: 1D nanomaterials/nanowires . Chem. Rev. 119 ( 15 ): 8955 – 8957 .
- Zhang , Z. , Zou , R. , Yu , L. , and Hu , J. ( 2011 ). One-dimensional silicon-based semiconductor nanomaterials: synthesis, structures, properties and applications . Crit. Rev. Solid State Mater. Sci. 36 ( June 2011 ): 148 – 173 .
-
Baraban , L.
,
Ibarlucea , B.
,
Baek , E.
, and
Cuniberti , G.
(
2019
).
Hybrid silicon nanowire devices and their functional diversity
.
Adv. Sci.
6
(
15
).
10.1002/advs.201900522 Google Scholar
- Baek , E. , Pregl , S. , Shaygan , M. et al. ( 2015 ). Optoelectronic switching of nanowire-based hybrid organic/oxide/semiconductor field-effect transistors . Nano Res. 8 ( 4 ): 1229 – 1240 .
- Jiang , R. , Li , B. , Fang , C. , and Wang , J. ( 2014 ). Metal/semiconductor hybrid nanostructures for plasmon-enhanced applications . Adv. Mater. 26 ( 31 ): 5274 – 5309 .
- Bashouti , M.Y. , Sardashti , K. , Schmitt , S.W. et al. ( 2013 ). Oxide-free hybrid silicon nanowires: from fundamentals to applied nanotechnology . Prog. Surf. Sci. 88 ( 1 ): 39 – 60 .
- Priolo , F. , Gregorkiewicz , T. , Galli , M. , and Krauss , T.F. ( 2014 ). Silicon nanostructures for photonics and photovoltaics . Nat. Nanotechnol. 9 ( 1 ): 19 – 32 .
- Lee , J. , Jang , J. , Choi , B. et al. ( 2015 ). A highly responsive silicon nanowire/amplifier MOSFET hybrid biosensor . Sci. Rep. 5 : 1 – 6 .
- Chen , R. , Li , D. , Hu , H. et al. ( 2012 ). Tailoring optical properties of silicon nanowires by au nanostructure decorations: enhanced Raman scattering and photodetection . J. Phys. Chem. C 116 ( 7 ): 4416 – 4422 .
- Vendamani , V.S. , Nageswara Rao , S.V.S. , Venugopal Rao , S. et al. ( 2018 ). Three-dimensional hybrid silicon nanostructures for surface enhanced Raman spectroscopy based molecular detection . J. Appl. Phys. 123 ( 1 ).
- Bae , J. , Kim , H. , Zhang , X.M. et al. ( 2010 ). Si nanowire metal-insulator-semiconductor photodetectors as efficient light harvesters . Nanotechnology 21 ( 9 ).
- Karadan , P. , Anappara , A.A. , Moorthy , V.H.S. et al. ( 2016 ). Improved broadband and omnidirectional light absorption in silicon nanopillars achieved through gradient mesoporosity induced leaky waveguide modulation . RSC Adv. 6 ( 110 ): 109157 – 109167 .
- Kiraly , B. , Yang , S. , and Huang , T.J. ( 2013 ). Multifunctional porous silicon nanopillar arrays: antireflection, superhydrophobicity, photoluminescence, and surface-enhanced Raman scattering . Nanotechnology 24 ( 24 ).
- Hasan , M. , Huq , M.F. , and Mahmood , Z.H. ( 2013 ). A review on electronic and optical properties of silicon nanowire and its different growth techniques . Springerplus 2 ( 1 ): 1 – 9 .
- Chan , C.K. , Peng , H. , Liu , G. et al. ( 2008 ). High-performance lithium battery anodes using silicon nanowires . Nat. Nanotechnol. 3 ( 1 ): 31 – 35 .
- Jeong , S. , Garnett , E.C. , Wang , S. et al. ( 2012 ). Hybrid silicon nanocone-polymer solar cells . Nano Lett. 12 ( 6 ): 2971 – 2976 .
- Almenabawy , S.M. and Swillam , M.A. ( 2020 ). Broad-band organic-silicon nanowire hybrid composites for solar energy applications . ACS Appl. Nano Mater. 3 ( 8 ): 7446 – 7453 .
- Wu , S.L. , Deng , J.H. , Zhang , T. et al. ( 2012 ). Tunable synthesis of carbon nanosheet/silicon nanowire hybrids for field emission applications . Diamond Relat. Mater. 26 : 83 – 88 .
- Reddy , A.L.M. , Gowda , S.R. , Shaijumon , M.M. , and Ajayan , P.M. ( 2012 ). Hybrid nanostructures for energy storage applications . Adv. Mater. 24 ( 37 ): 5045 – 5064 .
- Elbersen , R. , Vijselaar , W. , Tiggelaar , R.M. et al. ( 2015 ). Fabrication and doping methods for silicon nano- and micropillar arrays for solar-cell applications: a review . Adv. Mater. 27 ( 43 ): 6781 – 6796 .
- Fu , Y.Q. , Colli , A. , Fasoli , A. et al. ( 2009 ). Deep reactive ion etching as a tool for nanostructure fabrication . J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 27 ( 3 ): 1520 .
- Huang , Z. , Geyer , N. , Werner , P. et al. ( 2011 ). Metal-assisted chemical etching of silicon: a review . Adv. Mater. 23 ( 2 ): 285 – 308 .
- Hobbs , R.G. , Petkov , N. , and Holmes , J.D. ( 2012 ). Semiconductor nanowire fabrication by bottom-up and top-down paradigms . Chem. Mater. 24 ( 11 ): 1975 – 1991 .
- Sun , M.C. , Kim , G. , Lee , J.H. et al. ( 2013 ). Patterning of Si nanowire array with electron beam lithography for sub-22 nm Si nanoelectronics technology . Microelectron. Eng. 110 : 141 – 146 .
- Wagner , R.S. and Ellis , W.C. ( 1964 ). Vapor-liquid-solid mechanism of single crystal growth . Appl. Phys. Lett. 4 ( 5 ): 89 – 90 .
- Hochbaum , A.I. , Fan , R. , He , R. , and Yang , P. ( 2005 ). Controlled growth of Si nanowire arrays for device integration . Nano Lett. 5 ( 3 ): 457 – 460 .
- Canham , L.T. ( 1990 ). Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers . Appl. Phys. Lett. 57 ( 10 ): 1046 – 1048 .
- Yu , Y. , Fan , G. , Fermi , A. et al. ( 2017 ). Size-dependent photoluminescence efficiency of silicon nanocrystal quantum dots . J. Phys. Chem. C 121 ( 41 ): 23240 – 23248 .
- Limpens , R. , Lesage , A. , Fujii , M. , and Gregorkiewicz , T. ( 2015 ). Size confinement of Si nanocrystals in multinanolayer structures . Sci. Rep. 5 : 1 – 6 .
- Heitmann , J. , Müller , F. , Zacharias , M. , and Gösele , U. ( 2005 ). Silicon nanocrystals: size matters . Adv. Mater. 17 ( 7 ): 795 – 803 .
- Peng , K.Q. , Wang , X. , Li , L. et al. ( 2010 ). High-performance silicon nanohole solar cells . J. Am. Chem. Soc. 132 ( 20 ): 6872 – 6873 .
- Han , S.E. and Chen , G. ( 2010 ). Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics . Nano Lett. 10 ( 3 ): 1012 – 1015 .
- Deng , C. , Tan , X. , Jiang , L. et al. ( 2018 ). Efficient light trapping in silicon inclined nanohole arrays for photovoltaic applications . Opt. Commun. 407 ( August 2017 ): 199 – 203 .
- Zhu , J. , Hsu , C.M. , Yu , Z. et al. ( 2010 ). Nanodome solar cells with efficient light management and self-cleaning . Nano Lett. 10 ( 6 ): 1979 – 1984 .
- Becker , C. , Lockau , D. , Sontheimer , T. et al. ( 2012 ). Large-area 2D periodic crystalline silicon nanodome arrays on nanoimprinted glass exhibiting photonic band structure effects . Nanotechnology 23 ( 13 ).
- Zhong , S. , Wang , W. , Zhuang , Y. et al. ( 2016 ). All-solution-processed random Si nanopyramids for excellent light trapping in ultrathin solar cells . Adv. Funct. Mater. 26 ( 26 ): 4768 – 4777 .
- Tang , Q. , Shen , H. , Gao , K. et al. ( 2016 ). Efficient light trapping of quasi-inverted nanopyramids in ultrathin c-Si through a cost-effective wet chemical method . RSC Adv. 6 ( 99 ): 96686 – 96692 .
- Gupta , N. , Gupta , D. , Aggarwal , S. et al. ( 2014 ). Thermally stable plasmonic nanocermets grown on microengineered surfaces as versatile surface enhanced Raman spectroscopy sensors for multianalyte detection . ACS Appl. Mater. Interfaces 6 ( 24 ): 22733 – 22742 .
- Branham , M.S. , Hsu , W.C. , Yerci , S. et al. ( 2015 ). 15.7% efficient 10-μm-thick crystalline silicon solar cells using periodic nanostructures . Adv. Mater. 27 ( 13 ): 2182 – 2188 .
- He , Y. , Su , S. , Xu , T. et al. ( 2011 ). Silicon nanowires-based highly-efficient SERS-active platform for ultrasensitive DNA detection . Nano Today 6 ( 2 ): 122 – 130 .
- Luo , L.B. , Zeng , L.H. , Xie , C. et al. ( 2014 ). Light trapping and surface plasmon enhanced high-performance NIR photodetector . Sci. Rep. 4 : 3914 .
- Cao , L. , Fan , P. , and Brongersma , M.L. ( 2011 ). Optical coupling of deep-subwavelength semiconductor nanowires . Nano Lett. 11 ( 4 ): 1463 – 1468 .
- Picraux , S.T. , Dayeh , S.A. , Manandhar , P. et al. ( 2010 ). Silicon and germanium nanowires: growth, properties, and integration . JOM 62 : 35 – 44 .
- Chang , S.W. , Chuang , V.P. , Boles , S.T. et al. ( 2009 ). Densely packed arrays of ultra-high-as pect-ratio silicon nanowires fabricated using block-copolymer lithography and metal-assisted etching . Adv. Funct. Mater. 19 ( 15 ): 2495 – 2500 .
- Magdi , S. , El-Rifai , J. , and Swillam , M.A. ( 2018 ). One step fabrication of silicon nanocones with wide-angle enhanced light absorption . Sci. Rep. 8 ( 1 ): 1 – 10 .
- Li , Y. , Li , M. , Fu , P. et al. ( 2015 ). A comparison of light-harvesting performance of silicon nanocones and nanowires for radial-junction solar cells . Sci. Rep. 5 ( April ): 1 – 5 .
- Yang , H.J. , Yuan , F.W. , and Tuan , H.Y. ( 2010 ). Vapor-liquid-solid growth of silicon nanowires using organosilane as precursor . Chem. Commun. 46 ( 33 ): 6105 – 6107 .
- Tuan , H.Y. and Korgel , B.A. ( 2008 ). Importance of solvent-mediated phenylsilane decomposition kinetics for high-yield solution-phase silicon nanowire synthesis . Chem. Mater. 20 ( 4 ): 1239 – 1241 .
- Arbiol , J. , Kalache , B. , Cabarrocas , P.R.I. et al. ( 2007 ). Influence of Cu as a catalyst on the properties of silicon nanowires synthesized by the vapour-solid-solid mechanism . Nanotechnology 18 ( 30 ).
- Stelzner , T. , Andrä , G. , Wendler , E. et al. ( 2006 ). Growth of silicon nanowires by chemical vapour deposition on gold implanted silicon substrates . Nanotechnology 17 ( 12 ): 2895 – 2898 .
- Lee , D.C. , Hanrath , T. , and Korgel , B.A. ( 2005 ). The role of precursor-decomposition kinetics in silicon-nanowire synthesis in organic solvents . Angew. Chem. Int. Ed. 44 ( 23 ): 3573 – 3577 .
- Wu , Y. , Cui , Y. , Huynh , L. et al. ( 2004 ). Controlled growth and structures of molecular-scale silicon nanowires . Nano Lett. 4 ( 3 ): 433 – 436 .
- Wang , F. , Dong , A. , Sun , J. et al. ( 2006 ). Solution-liquid-solid growth of semiconductor nanowires . Inorg. Chem. 45 ( 19 ): 7511 – 7521 .
- Rangelow , I.W. ( 2003 ). Critical tasks in high aspect ratio silicon dry etching for microelectromechanical systems . J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 21 ( 4 ): 1550 – 1562 .
- Dimova-Malinovska , D. , Sendova-Vassileva , M. , Tzenov , N. , and Kamenova , M. ( 1997 ). Preparation of thin porous silicon layers by stain etching . Thin Solid Films 297 ( 1–2 ): 9 – 12 .
- Alhmoud , H. , Brodoceanu , D. , Elnathan , R. et al. ( 2021 ). A MACEing silicon: towards single-step etching of defined porous nanostructures for biomedicine . Prog. Mater Sci. 116 ( June 2019 ): 100636 .
- Smith , Z.R. , Smith , R.L. , and Collins , S.D. ( 2013 ). Mechanism of nanowire formation in metal assisted chemical etching . Electrochim. Acta 92 : 139 – 147 .
- Chen , H. , Wang , H. , Zhang , X.H. et al. ( 2010 ). Wafer-scale synthesis of single-crystal zigzag silicon nanowire arrays with controlled turning angles . Nano Lett. 10 ( 3 ): 864 – 868 .
- Karadan , P. , John , S. , Anappara , A.A. et al. ( 2016 ). Evolution mechanism of mesoporous silicon nanopillars grown by metal-assisted chemical etching and nanosphere lithography: correlation of Raman spectra and red photoluminescence . Appl. Phys. A Mater. Sci. Process 122 ( 7 ): 1 – 10 .
- Li , X. and Bonn , P.W. ( 2000 ). Metal-assisted chemical etching in HF/H 2 O 2 produces porous silicon . Appl. Phys. Lett. 77 ( 16 ): 2572 – 2574 .
- Geng , X. , Li , M. , Zhao , L. , and Bohn , P.W. ( 2011 ). Metal-assisted chemical etching using Tollen's reagent to deposit silver nanoparticle catalysts for fabrication of quasi-ordered silicon micro/nanostructures . J. Electron. Mater. 40 ( 12 ): 2480 – 2485 .
- Li , J.F. , Zhang , Y.J. , Ding , S.Y. et al. ( 2017 ). Core-shell nanoparticle-enhanced Raman spectroscopy . Chem. Rev. 117 ( 7 ): 5002 – 5069 .
- Le Ru , E.C. and Etchegoin , P.G. ( 2009 ). Principles of Surface-Enhanced Raman Spectroscopy . Elsevier .
- Willets , K.A. and Van Duyne , R.P. ( 2007 ). Localized surface plasmon resonance spectroscopy and sensing . Annu. Rev. Phys. Chem. 58 : 267 – 297 .
- Schlücker , S. ( 2014 ). Surface-enhanced Raman spectroscopy: concepts and chemical applications . Angew. Chem. Int. Ed. 53 ( 19 ): 4756 – 4795 .
- Sharma , B. , Fernanda Cardinal , M. , Kleinman , S.L. et al. ( 2013 ). High-performance SERS substrates: advances and challenges . MRS Bull. 38 ( 8 ): 615 – 624 .
- Deng , Y.L. and Juang , Y.J. ( 2014 ). Black silicon SERS substrate: effect of surface morphology on SERS detection and application of single algal cell analysis . Biosens. Bioelectron. 53 : 37 – 42 .
- Khinevich , N. , Bandarenka , H. , Zavatski , S. et al. ( 2021 ). Porous silicon – a versatile platform for mass-production of ultrasensitive SERS-active substrates . Microporous Mesoporous Mater. 323 ( May ).
- Siddhanta , S. , Thakur , V. , Narayana , C. , and Shivaprasad , S.M. ( 2012 ). Substrate for biosensing . ACS Appl. Mater. Interfaces 4 ( 11 ): 5807 – 5812 .
- Chen , X. , Wen , J. , Zhou , J. et al. ( 2018 ). Superhydrophobic SERS substrates based on silicon hierarchical nanostructures . J. Opt. 20 ( 2 ).
- Kosovic , M. , Balarin , M. , Ivanda , M. et al. ( 2015 ). Porous silicon covered with silver nanoparticles as surface-enhanced Raman scattering (SERS) substrate for ultra-low concentration detection . Appl. Spectrosc. 69 ( 12 ): 1417 – 1424 .
- Tsao , C.W. , Zheng , Y.S. , Sun , Y.S. , and Cheng , Y.C. ( 2021 ). Surface-enhanced Raman scattering (SERS) spectroscopy on localized silver nanoparticle-decorated porous silicon substrate . Analyst 146 ( 24 ): 7645 – 7652 .
- Ouhibi , A. , Raouafi , A. , Lorrain , N. et al. ( 2021 ). Functionalized SERS substrate based on silicon nanowires for rapid detection of prostate specific antigen . Sens. Actuators, B 330 ( December 2020 ): 129352 .
- Li , H. , Yang , B. , Yu , B. et al. ( 2021 ). Graphene-coated Si nanowires as substrates for surface-enhanced Raman scattering . Appl. Surf. Sci. 541 ( July 2020 ): 148486 .
- Vo , V.T. , Gwon , Y. , Phung , V.D. et al. ( 2021 ). Ag-deposited porous silicon as a SERS-active substrate for the sensitive detection of catecholamine neurotransmitters . Electron. Mater. Lett. 17 ( 3 ): 292 – 298 .
- Schmidt , M.S. , Hübner , J. , and Boisen , A. ( 2012 ). Large area fabrication of leaning silicon nanopillars for surface enhanced Raman spectroscopy . Adv. Mater. 24 ( 10 ): 11 – 18 .
- Magno , G. , Bélier , B. , and Barbillon , G. ( 2018 ). Al/Si nanopillars as very sensitive SERS substrates . Materials 11 ( 9 ): 1 – 9 .
- Seol , M.L. , Choi , S.J. , Baek , D.J. et al. ( 2012 ). A nanoforest structure for practical surface-enhanced Raman scattering substrates . Nanotechnology 23 ( 9 ).
- Kanipe , K.N. , Chidester , P.P.F. , Stucky , G.D. , and Moskovits , M. ( 2016 ). Large format surface-enhanced Raman spectroscopy substrate optimized for enhancement and uniformity . ACS Nano 10 ( 8 ): 7566 – 7571 .
- Lin , D. , Wu , Z. , Li , S. et al. ( 2017 ). Large-area Au-nanoparticle-functionalized Si nanorod arrays for spatially uniform surface-enhanced Raman spectroscopy . ACS Nano 11 ( 2 ): 1478 – 1487 .
- Karadan , P. , Aggarwal , S. , Anappara , A.A. et al. ( 2018 ). Tailored periodic Si nanopillar based architectures as highly sensitive universal SERS biosensing platform . Sens. Actuators, B 254 : 264 – 271 .
- Huang , J.A. , Zhao , Y.Q. , Zhang , X.J. et al. ( 2013 ). Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection . Nano Lett. 13 ( 11 ): 5039 – 5045 .
- Xu , D. , Teng , F. , Wang , Z. , and Lu , N. ( 2017 ). Droplet-confined electroless deposition of silver nanoparticles on ordered superhydrophobic structures for high uniform SERS measurements . ACS Appl. Mater. Interfaces 9 ( 25 ): 21548 – 21553 .
- Akin , M.S. , Yilmaz , M. , Babur , E. et al. ( 2014 ). Large area uniform deposition of silver nanoparticles through bio-inspired polydopamine coating on silicon nanowire arrays for practical SERS applications . J. Mater. Chem. B 2 ( 30 ): 4894 – 4900 .
- Wang , H. , Han , X. , Ou , X. et al. ( 2013 ). Silicon nanowire based single-molecule SERS sensor . Nanoscale 5 ( 17 ): 8172 – 8176 .
- Zhao , Y. , Huang , J.A. , Zhang , Z. et al. ( 2014 ). Quantitative analysis of multiplex-components and double stranded DNA by wide-range surface-enhanced Raman spectroscopy based on ordered Ag/Si nanowire arrays . J. Mater. Chem. A 2 ( 26 ): 10218 – 10224 .
- Huang , Y. , Ferhan , A.R. , Cho , S.J. et al. ( 2015 ). Gold nanowire bundles grown radially outward from silicon micropillars . ACS Appl. Mater. Interfaces 7 ( 32 ): 17582 – 17586 .
- Mehrvar , L. , Sadeghipari , M. , Tavassoli , S.H. et al. ( 2017 ). Optical and surface enhanced Raman scattering properties of Ag modified silicon double nanocone array . Sci. Rep. 7 ( 1 ): 1 – 13 .
- Jeon , H.C. , Heo , C.J. , Lee , S.Y. , and Yang , S.M. ( 2012 ). Hierarchically ordered arrays of noncircular silicon nanowires featured by holographic lithography toward a high-fidelity sensing platform . Adv. Funct. Mater. 22 ( 20 ): 4268 – 4274 .
- He , X. , Liu , Y. , Xue , X. et al. ( 2017 ). Ultrasensitive detection of explosives: via hydrophobic condensation effect on biomimetic SERS platforms . J. Mater. Chem. C 5 ( 47 ): 12384 – 12392 .
- Liu , J. , Meng , G. , Li , Z. et al. ( 2015 ). Ag-NP@Ge-nanotaper/Si-micropillar ordered arrays as ultrasensitive and uniform surface enhanced Raman scattering substrates . Nanoscale 7 ( 43 ): 18218 – 18224 .
- Wang , Z. , Zheng , C. , Zhang , P. et al. ( 2020 ). A split-type structure of Ag nanoparticles and Al 2 O 3 @Ag@Si nanocone arrays: An ingenious strategy for SERS-based detection . Nanoscale 12 ( 7 ): 4359 – 4365 .
- Shinki , S. and J., and Sarkar, S. ( 2021 ). Tuning the topographical parameters of Si pyramids for a better surface enhanced Raman response . Phys. Chem. Chem. Phys. 23 ( 46 ): 26407 – 26416 .
- Xie , C. , Lu , X.T. , Tong , X.W. et al. ( 2019 ). Recent progress in solar-blind deep-ultraviolet photodetectors based on inorganic ultrawide bandgap semiconductors . Adv. Funct. Mater. 29 ( 9 ).
- Tian , W. , Sun , H. , Chen , L. et al. ( 2019 ). Low-dimensional nanomaterial/Si heterostructure-based photodetectors . InfoMat 1 ( 2 ): 140 – 163 .
- Karadan , P. , Parida , S. , Kumar , A. et al. ( 2017 ). Charge transport studies on Si nanopillars for photodetectors fabricated using vapor phase metal-assisted chemical etching . Appl. Phys. A Mater. Sci. Process 123 ( 11 ): 1 – 10 .
- Li , X. ( 2012 ). Metal assisted chemical etching for high aspect ratio nanostructures: a review of characteristics and applications in photovoltaics . Curr. Opin. Solid State Mater. Sci. 16 ( 2 ): 71 – 81 .
- Xie , C. , Nie , B. , Zeng , L. et al. ( 2014 ). Core À shell heterojunction of silicon nanowire arrays and carbon quantum dots for photovoltaic devices and self driven photodetectors . ACS Nano 8 ( 4 ): 4015 – 4022 .
- Wu , C.Y. , Pan , Z.Q. , Wang , Y.Y. et al. ( 2016 ). Core-shell silicon nanowire array-Cu nanofilm Schottky junction for a sensitive self-powered near-infrared photodetector . J. Mater. Chem. C 4 ( 46 ): 10804 – 10811 .
- Fan , P. , Huang , K.C.Y. , Cao , L. , and Brongersma , M.L. ( 2013 ). Redesigning photodetector electrodes as an optical antenna . Nano Lett. 13 ( 2 ): 392 – 396 .
- Fan , P. , Chettiar , U.K. , Cao , L. et al. ( 2012 ). An invisible metal-semiconductor photodetector . Nat. Photonics 6 ( 6 ): 380 – 385 .
- Kumar , A. , Karadan , P. , and Barshilia , H.C. ( 2018 ). Synthesis of silver nanowires towards the development the ultrasensitive AgNWs/SiNPLs hybrid photodetector and flexible transparent conductor . Mater. Sci. Semicond. Process. 75 ( November 2017 ): 239 – 246 .
- Luongo , G. , Grillo , A. , Giubileo , F. et al. ( 2019 ). Graphene Schottky junction on pillar patterned silicon substrate . Nanomaterials 9 ( 5 ): 1 – 10 .
- Cao , Y. , Zhu , J. , Xu , J. et al. ( 2014 ). Ultra-broadband photodetector for the visible to terahertz range by self-assembling reduced graphene oxide-silicon nanowire array heterojunctions . Small 10 ( 12 ): 2345 – 2351 .
- Seol , M.L. , Ahn , J.H. , Choi , J.M. et al. ( 2012 ). Self-aligned nanoforest in silicon nanowire for sensitive conductance modulation . Nano Lett. 12 ( 11 ): 5603 – 5608 .
- Winkelmann , C.B. , Ionica , I. , Chevalier , X. et al. ( 2007 ). Optical switching of porphyrin-coated silicon nanowire field effect transistors . Nano Lett. 7 ( 6 ): 1454 – 1458 .
- Choi , S.J. , Lee , Y.C. , Seol , M.L. et al. ( 2011 ). Bio-inspired complementary photoconductor by porphyrin-coated silicon nanowires . Adv. Mater. 23 ( 34 ): 3979 – 3983 .
- Lefler , S. , Vizel , R. , Yeor , E. et al. ( 2018 ). Multicolor spectral-specific silicon nanodetectors based on molecularly embedded nanowires . Nano Lett. 18 ( 1 ): 190 – 201 .