Engineered Doping of Organic Thermoelectric Materials
Jiamin Ding
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Haidian District, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049 China
Search for more papers by this authorLanyi Xiang
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Haidian District, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049 China
Search for more papers by this authorZheng Ji
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Haidian District, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049 China
Search for more papers by this authorLiyao Liu
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Haidian District, Beijing, 100190 China
Search for more papers by this authorYe Zou
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Haidian District, Beijing, 100190 China
Search for more papers by this authorChong-an Di
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Haidian District, Beijing, 100190 China
Search for more papers by this authorJiamin Ding
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Haidian District, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049 China
Search for more papers by this authorLanyi Xiang
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Haidian District, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049 China
Search for more papers by this authorZheng Ji
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Haidian District, Beijing, 100190 China
School of Chemical Sciences, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049 China
Search for more papers by this authorLiyao Liu
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Haidian District, Beijing, 100190 China
Search for more papers by this authorYe Zou
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Haidian District, Beijing, 100190 China
Search for more papers by this authorChong-an Di
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Haidian District, Beijing, 100190 China
Search for more papers by this authorDaoben Zhu
CAS Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190 China
Search for more papers by this authorSummary
Doping is of vital importance to modulate the performance of thermoelectric materials. Over the past decade, organic thermoelectric (OTE) materials have experienced rapid development, but the doping of OSCs for TE application lags behind. Recent efforts have been devoted to developing energetically matched host and dopant molecules, new doping methods, and mechanisms. This chapter introduces the basic mechanisms, fundamental requirements, and recent advances of doping for OTE applications. At first, we provide an overview of the existing categories of doping mechanisms and methods. Thereafter, we summarize doping strategies for developing state-of-the-art OTE materials. Finally, challenges and perspectives on doping are proposed to highlight the related directions that deserve focus attention.
References
- Heeger , A.J. ( 1985 ). Charge storage in conducting polymers – solitons, polarons, and bipolarons . Polym. J. 17 : 201 – 208 .
- Zhao , W. , Ding , J. , Zou , Y. et al. ( 2020 ). Chemical doping of organic semiconductors for thermoelectric applications . Chem. Soc. Rev. 49 : 7210 – 7228 .
- Jacobs , I.E. and Moule , A.J. ( 2017 ). Controlling molecular doping in organic semiconductors . Adv. Mater. 29 : 1703063 .
- Xu , Y. , Sun , H. , Liu , A. et al. ( 2018 ). Doping: a key enabler for organic transistors . Adv. Mater. 30 : e1801830 .
- Kroon , R. , Mengistie , D.A. , Kiefer , D. et al. ( 2016 ). Thermoelectric plastics: from design to synthesis, processing and structure-property relationships . Chem. Soc. Rev. 45 : 6147 – 6164 .
- Salzmann , I. , Heimel , G. , Oehzelt , M. et al. ( 2016 ). Molecular electrical doping of organic semiconductors: fundamental mechanisms and emerging dopant design rules . Acc. Chem. Res. 49 : 370 – 378 .
- R.M. Metzger (ed.) ( 2012 ). Unimolecular and Supramolecular Electronics I: Chemistry and Physics Meet at Metal-Molecule Interfaces , 1 – 307 . Berlin, Berlin : Springer-Verlag .
- Winkler , S. , Amsalem , P. , Frisch , J. et al. ( 2015 ). Probing the energy levels in hole-doped molecular semiconductors . Mater. Horiz. 2 : 427 – 433 .
- Bredas , J.L. and Street , G.B. ( 1985 ). Polarons, bipolarons, and solitons in conducting polymers . Acc. Chem. Res. 18 : 309 – 315 .
- Yamashita , Y. , Tsurumi , J. , Ohno , M. et al. ( 2019 ). Efficient molecular doping of polymeric semiconductors driven by anion exchange . Nature 572 : 634 – 638 .
- Mendez , H. , Heimel , G. , Winkler , S. et al. ( 2015 ). Charge-transfer crystallites as molecular electrical dopants . Nat. Commun. 6 : 8560 .
- Mendez , H. , Heimel , G. , Opitz , A. et al. ( 2013 ). Doping of organic semiconductors: impact of dopant strength and electronic coupling . Angew. Chem. Int. Ed. 52 : 7751 – 7755 .
- Yang , J. , Li , Y. , Duhm , S. et al. ( 2014 ). Molecular structure-dependent charge injection and doping efficiencies of organic semiconductors: impact of side chain substitution . Adv. Mater. Interfaces 1 : 1300128 .
- Ghani , F. , Opitz , A. , Pingel , P. et al. ( 2015 ). Charge transfer in and conductivity of molecularly doped thiophene-based copolymers, journal of polymer science part B-polymer . Fortschr. Phys. 53 : 58 – 63 .
- Li , J. , D'Avino , G. , Pershin , A. et al. ( 2017 ). Correlated electron-hole mechanism for molecular doping in organic semiconductors . Phys. Rev. Mater. 1 : 025602 .
- Ha , S.D. , Qi , Y. , and Kahn , A. ( 2010 ). Relative permittivity and Hubbard U of pentacene extracted from scanning tunneling microscopy studies of p-doped films . Chem. Phys. Lett. 495 : 212 – 217 .
- Patel , S.N. , Glaudell , A.M. , Kiefer , D. , and Chabinyc , M.L. ( 2016 ). Increasing the thermoelectric power factor of a semiconducting polymer by doping from the vapor phase . ACS Macro Lett. 5 : 268 – 272 .
- Lee , J. , Kim , J. , Nguyen , T.L. et al. ( 2018 ). A planar cyclopentadithiophene–benzothiadiazole-based copolymer with sp 2 -hybridized bis(alkylsulfanyl)methylene substituents for organic thermoelectric devices . Macromolecules 51 : 3360 – 3368 .
- Yurash , B. , Cao , D.X. , Brus , V.V. et al. ( 2019 ). Towards understanding the doping mechanism of organic semiconductors by Lewis acids . Nat. Mater. 18 : 1327 – 1334 .
- Un , H.I. , Gregory , S.A. , Mohapatra , S.K. et al. ( 2019 ). Understanding the effects of molecular dopant on n-type organic thermoelectric properties . Adv. Energy Mater. 9 : 1900817 .
- Hynynen , J. , Kiefer , D. , and Muller , C. ( 2018 ). Influence of crystallinity on the thermoelectric power factor of P3HT vapour-doped with F4TCNQ . RSC Adv. 8 : 1593 – 1599 .
- Sichel , E.K. , Knowles , M. , Rubner , M. , and Georger , J. ( 1982 ). Effect of dopant-molecule size on the electrical conductivity of polyacetylene . Phys. Rev. B 25 : 5574 – 5577 .
-
Shirakawa , H.
,
Louis , E.J.
,
Macdiarmid , A.G.
et al. (
1977
).
Synthesis of electrically conducting organic polymers – halogen derivatives of polyacetylene, (CH)X
.
J. Chem. Soc. Chem. Commun.
578
–
580
.
10.1039/c39770000578 Google Scholar
- Abdou , M.S.A. , Orfino , F.P. , Son , Y. , and Holdcroft , S. ( 1997 ). Interaction of oxygen with conjugated polymers: charge transfer complex formation with poly(3-alkylthiophenes) . J. Am. Chem. Soc. 119 : 4518 – 4524 .
- Chabinyc , M.L. , Street , R.A. , and Northrup , J.E. ( 2007 ). Effects of molecular oxygen and ozone on polythiophene-based thin-film transistors . Appl. Phys. Lett. 90 : 123508 .
- Lu , C.-K. and Meng , H.-F. ( 2007 ). Hole doping by molecular oxygen in organic semiconductors: band-structure calculations . Phys. Rev. B 75 .
- Krellner , C. , Haas , S. , Goldmann , C. et al. ( 2007 ). Density of bulk trap states in organic semiconductor crystals: discrete levels induced by oxygen in rubrene . Phys. Rev. B 75 : 235206 .
- Kalb , W.L. , Mattenberger , K. , and Batlogg , B. ( 2008 ). Oxygen-related traps in pentacene thin films: energetic position and implications for transistor performance . Phys. Rev. B 78 : 035334 .
- Acker , D.S. , Harder , R.J. , Hertler , W.R. et al. ( 1960 ). 7,7,8,8-Tetracyanoquinodimethane and its electrically conducting anion-radical derivatives . J. Am. Chem. Soc. 82 : 6408 – 6409 .
- Kepler , R.G. , Bierstedt , P.E. , and Merrifield , R.E. ( 1960 ). Electronic conduction and exchange interaction in a new class of conductive organic solids . Phys. Rev. Lett. 5 : 503 – 504 .
- Melby , L.R. , Mahler , W. , Mochel , W.E. et al. ( 1962 ). Substituted quinodimethans. II. Anion-radical derivatives and complexes of 7,7,8,8-tetracyanoquinodimethan . J. Am. Chem. Soc. 84 : 3374–3387 .
- Gao , W.Y. and Kahn , A. ( 2003 ). Controlled p doping of the hole-transport molecular material N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,1(′)-biphenyl-4,4′-diamine with tetrafluorotetracyanoquin odimethane . J. Appl. Phys. 94 : 359 – 366 .
- Gao , W.Y. and Kahn , A. ( 2001 ). Controlled p-doping of zinc phthalocyanine by coevaporation with tetrafluorotetracyanoquinodimethane: a direct and inverse photoemission study . Appl. Phys. Lett. 79 : 4040 – 4042 .
- Rainbolt , J.E. , Koech , P.K. , Polikarpov , E. et al. ( 2013 ). Synthesis and characterization of p-type conductivity dopant 2-(3-(adamantan-1-yl)propyl)-3,5,6-trifluoro-7,7,8,8-tetracyanoquinodime thane . J. Mater. Chem. C 1 : 1876 – 1884 .
- Li , J. , Zhang , G. , Holm , D.M. et al. ( 2015 ). Introducing solubility control for improved organic P-type dopants . Chem. Mater. 27 : 5765 – 5774 .
- Al-Ahmary , K.M. , El-Kholy , M.M. , Al-Solmy , I.A. , and Habeeb , M.M. ( 2013 ). Spectroscopic studies and molecular orbital calculations on the charge transfer reaction between DDQ and 2-aminopyridine . Spectrochim. Acta Part A Mol. Biomol. Spectr. 110 : 343 – 350 .
- Kroon , R. , Kiefer , D. , Stegerer , D. et al. ( 2017 ). Polar side chains enhance processability, electrical conductivity, and thermal stability of a molecularly p-doped polythiophene . Adv. Mater. 29 : 1700930 .
- Fukunaga , T. ( 1976 ). Negatively substituted trimethylenecyclopropane dianions . J. Am. Chem. Soc. 98 : 610 – 611 .
- Karpov , Y. , Erdmann , T. , Raguzin , I. et al. ( 2016 ). High conductivity in molecularly p-doped diketopyrrolopyrrole-based polymer: the impact of a high dopant strength and good structural order . Adv. Mater. 28 : 6003–6010 .
- Yoo , W.S. , Ishigaki , T. , Ueda , T. , et al. ( 2014 ). IEEE, Grain size monitoring of 3D flash memory channel poly-Si using multiwavelength Raman Spectroscopy, Jeju, Korea (South) .
- Solomeshch , O. , Yu , Y.J. , Goryunkov , A.A. et al. ( 2009 ). Ground-state interaction and electrical doping of fluorinated C-60 in conjugated polymers . Adv. Mater. 21 : 4456–4460 .
- Tadich , A. , Edmonds , M.T. , Ley , L. et al. ( 2013 ). Tuning the charge carriers in epitaxial graphene on SiC(0001) from electron to hole via molecular doping with C60F48 . Appl. Phys. Lett. 102 : 241601 .
- Meerheim , R. , Olthof , S. , Hermenau , M. et al. ( 2011 ). Investigation of C(60)F(36) as low-volatility p-dopant in organic optoelectronic devices . J. Appl. Phys. 109 : 103102 .
- Cates , N.C. , Gysel , R. , Beiley , Z. et al. ( 2009 ). Tuning the properties of polymer bulk heterojunction solar cells by adjusting fullerene size to control intercalation . Nano Lett. 9 : 4153 – 4157 .
- Mayer , A.C. , Toney , M.F. , Scully , S.R. et al. ( 2009 ). Bimolecular crystals of fullerenes in conjugated polymers and the implications of molecular mixing for solar cells . Adv. Funct. Mater. 19 : 1173 – 1179 .
- Qi , Y. , Sajoto , T. , Kroeger , M. et al. ( 2010 ). A molybdenum dithiolene complex as p-dopant for hole-transport materials: a multitechnique experimental and theoretical investigation . Chem. Mater. 22 : 524 – 531 .
- Zhang , Q. , Sun , Y. , Xu , W. , and Zhu , D. ( 2012 ). Thermoelectric energy from flexible P3HT films doped with a f erric salt of triflimide anions . Energy Environ. Sci. 5 : 9639 – 9644 .
- Kao , C.Y. , Lee , B. , Wielunski , L.S. et al. ( 2009 ). Doping of conjugated polythiophenes with alky silanes . Adv. Funct. Mater. 19 : 1906 – 1911 .
- Glaudell , A.M. , Cochran , J.E. , Patel , S.N. , and Chabinyc , M.L. ( 2015 ). Impact of the doping method on conductivity and thermopower in semiconducting polythiophenes . Adv. Energy Mater. 5 : 1401072 .
- Haddon , R.C. , Hebard , A.F. , Rosseinsky , M.J. et al. ( 1991 ). Conducting films of C60 and C70 by alkali-metal doping . Nature 350 : 320 – 322 .
- Nollau , A. , Pfeiffer , M. , Fritz , T. , and Leo , K. ( 2000 ). Controlled n-type doping of a molecular organic semiconductor: naphthalenetetracarboxylic dianhydride (NTCDA) doped with bis(ethylenedithio)-tetrathiafulvalene (BEDT-TTF) . J. Appl. Phys. 87 : 4340 – 4343 .
- Li , F. , Pfeiffer , M. , Werner , A. et al. ( 2006 ). Acridine orange base as a dopant for n doping of C-60 thin films . J. Appl. Phys. 100 : 023716 .
- Bloom , C.J. , Elliott , C.M. , Schroeder , P.G. et al. ( 2003 ). Low work function reduced metal complexes as cathodes in organic electroluminescent devices . J. Phys. Chem. B 107 : 2933 – 2938 .
- Menke , T. , Ray , D. , Meiss , J. et al. ( 2012 ). In-situ conductivity and Seebeck measurements of highly efficient n-dopants in fullerene C-60 . Appl. Phys. Lett. 100 : 093304 .
- Yang , CY. , Ding , YF. , Huang , D. et al. ( 2020 ). A thermally activated and highly miscible dopant for n-type organic thermoelectrics . Nat. Commun. 11 : 3292 .
- Itahara , H. , Maesato , M. , Asahi , R. et al. ( 2009 ). Thermoelectric properties of organic charge-transfer compounds . J. Electron. Mater. 38 : 1171 – 1175 .
- Jerome , D. and Schulz , H.J. ( 1982 ). Organic conductors and superconductors . Adv. Phys. 31 : 299 – 490 .
-
Casian , A.
,
Balandin , A.A.
,
Dusciac , V.
et al. (
2002
).
Modeling of the thermoelectric properties of quasi-one-dimensional organic semiconductors
. In:
21st International Conference on Thermoelectrics (ICT 02) Long Beach, CA
,
310
–
313
.
IEEE
.
10.1109/ICT.2002.1190327 Google Scholar
- Ferraris , J.P. and Finnegan , T.F. ( 1976 ). Electric susceptibility and dc conductivity of crystalline TTF-TCNQ . Solid State Commun. 18 : 1169 – 1172 .
- Chaikin , P.M. , Kwak , J.F. , Jones , T.E. et al. ( 1973 ). Thermoelectric power of tetrathiofulvalinium tetracyanoquinodimethane . Phys. Rev. Lett. 31 : 601 – 604 .
- Bernstein , U. , Chaikin , P.M. , and Pincus , P. ( 1975 ). Tetrathiafulvalene tetracyanoquinodimethane (TTF-TCNQ) – zero-bandgap semiconductor . Phys. Rev. Lett. 34 : 271 – 274 .
- Salamon , M.B. , Bray , J.W. , Depasquale , G. et al. ( 1975 ). Thermal-conductivity of tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) near metal-insulator transition . Phys. Rev. B 11 : 619 – 622 .
- Jacobs , I.E. , Aasen , E.W. , Oliveira , J.L. et al. ( 2016 ). Comparison of solution-mixed and sequentially processed P3HT:F4TCNQ films: effect of doping-induced aggregation on film morphology . J. Mater. Chem. C 4 : 3454 – 3466 .
- Zhang , Q. , Sun , Y. , Jiao , F. et al. ( 2012 ). Effects of structural order in the pristine state on the thermoelectric po wer-factor of doped PBTTT films . Synth. Met. 162 : 788 – 793 .
- Zhang , F. , Dai , X. , Zhu , W. et al. ( 2017 ). Large modulation of charge carrier mobility in doped nanoporous organic transistors . Adv. Mater. 29 : 1700411 .
- Kang , K. , Watanabe , S. , Broch , K. et al. ( 2016 ). 2D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion . Nat. Mater. 15 : 896–902 .
- Zuo , G.Z. , Andersson , O. , Abdalla , H. , and Kemerink , M. ( 2018 ). High thermoelectric power factor from multilayer solution-processed organic films . Appl. Phys. Lett. 112 : 083303 .
- Zhang , F. , Zang , Y. , Huang , D. et al. ( 2015 ). Modulated thermoelectric properties of organic semiconductors using field-effect transistors . Adv. Funct. Mater. 25 : 3004 – 3012 .
- Minakata , T. , Nagoya , I. , and Ozaki , M. ( 1991 ). Highly ordered and conducting thin-film of pentacene doped with iodine vapor . J. Appl. Phys. 69 : 7354 – 7356 .
- Hayashi , K. , Shinano , T. , Miyazaki , Y. , and Kajitani , T. ( 2011 ). Fabrication of iodine-doped pentacene thin films for organic thermoelectric devices . J. Appl. Phys. 109 : 023712 .
- Kim , G.H. , Shtein , M. , and Pipe , K.P. ( 2011 ). Thermoelectric and bulk mobility measurements in pentacene thin films . Appl. Phys. Lett. 98 : 093303 .
- Zhang , Q. , Sun , Y. , Xu , W. , and Zhu , D. ( 2014 ). Organic thermoelectric materials: emerging green energy materials converting heat to electricity directly and efficiently . Adv. Mater. 26 : 6829 – 6851 .
- Harada , K. , Sumino , M. , Adachi , C. et al. ( 2010 ). Improved thermoelectric performance of organic thin-film elements utilizing a bilayer structure of pentacene and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F-4-TCNQ) . Appl. Phys. Lett. 96 : 253304 .
- Huang , D. , Wang , C. , Zou , Y. et al. ( 2016 ). Bismuth interfacial doping of organic small molecules for high performance n-type thermoelectric materials . Angew. Chem. Int. Ed. 55 : 10672 – 10675 .
- Bredas , J.L. , Marder , S.R. , Salaneck , W.R. et al. - Tribute( 2002 ). Macromolecules 35 : 1137 – 1139 .
- Bubnova , O. , Berggren , M. , and Crispin , X. ( 2012 ). Tuning the thermoelectric properties of conducting polymers in an electrochemical transistor . J. Am. Chem. Soc. 134 : 16456 – 16459 .
- Park , T. , Park , C. , Kim , B. et al. ( 2013 ). Flexible PEDOT electrodes with large thermoelectric power factors to generate electricity by the touch of fingertips . Energy Environ. Sci. 6 : 788 – 792 .
- Heeger , A.J. , Kivelson , S. , Schrieffer , J.R. , and Su , W.P. ( 1988 ). Solitons in conducting polymers . Rev. Mod. Phys. 60 : 781 – 850 .
- Pernstich , K.P. , Roessner , B. , and Batlogg , B. ( 2008 ). Field-effect-modulated Seebeck coefficient in organic semiconductors . Nat. Mater. 7 : 321 – 325 .
- Venkateshvaran , D. , Kronemeijer , A.J. , Moriarty , J. et al. ( 2014 ). Field-effect modulated Seebeck coefficient measurements in an organic polymer using a microfabricated on-chip architectur e . APL Mater. 2 : 032102 .
- von Muehlenen , A. , Errien , N. , Schaer , M. et al. ( 2007 ). Thermopower measurements on pentacene transistors . Phys. Rev. B 75 : 115338 .
- Fritzsche , H. ( 1971 ). A general expression for thermoelectric power . Solid State Commun. 9 : 1813–1815 .
- Broch , K. , Venkateshvaran , D. , Lemaur , V. et al. ( 2017 ). Measurements of ambipolar Seebeck coefficients in high-mobility diketopyrrolopyrrole donor-acceptor copolymers . Adv. Electron. Mater. 3 : 1700225 .
- Tashiro , K. , Ono , K. , Minagawa , Y. et al. ( 1991 ). Structure and thermochromic solid-state phase-transition of poly(3-ALKYLTHIOPHENE) . J. Polym. Sci. Part B Polym. Phys. 29 : 1223 – 1233 .
- Shimotani , H. , Diguet , G. , and Iwasa , Y. ( 2005 ). Direct comparison of field-effect and electrochemical doping in regioregular poly(3-hexylthiophene) . Appl. Phys. Lett. 86 : 022104 .
- Panzer , M.J. and Frisbie , C.D. ( 2006 ). High carrier density and metallic conductivity in poly(3-hexylthiophene) achieved by electrostatic charge injection . Adv. Funct. Mater. 16 : 1051 – 1056 .
- Cho , J.H. , Lee , J. , Xia , Y. et al. ( 2008 ). Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic . Nat. Mater. 7 : 900 – 906 .
- Thomas , E.M. , Popere , B.C. , Fang , H. et al. ( 2018 ). Role of disorder induced by doping on the thermoelectric properties of semiconducting polymers . Chem. Mater. 30 : 2965 – 2972 .
- Baeg , K.-J. , Binda , M. , Natali , D. et al. ( 2013 ). Organic light detectors: photodiodes and phototransistors . Adv. Mater. 25 : 4267 – 4295 .
- Gao , Y. , Yi , Y. , Wang , X. et al. ( 2019 ). A novel hybrid-layered organic phototransistor enables efficient intermolecular charge transfer and carrier transport for ultrasensitive photodetection . Adv. Mater. 31 : 1900763 .
- Zhao , W. , Zhang , F. , Dai , X. et al. ( 2020 ). Enhanced thermoelectric performance of N-type organic semiconductor via electric field modulated photo-thermoelectric effect . Adv. Mater. 32 : 2000273 .
- Xu , L. , Liu , Y. , Garrett , M.P. et al. ( 2013 ). Enhancing Seebeck effects by using excited states in organic semiconducting polymer MEH-PPV based on multi layer electrode/polymer/electrode thin-film structure . J. Phys. Chem. C 117 : 10264 – 10269 .
- Mehta , P. , Barboun , P.M. , Engelmann , Y. et al. ( 2020 ). Plasma-catalytic ammonia synthesis beyond the equilibrium limit . ACS Catal. 10 : 6726 – 6734 .
- Hu , D. , Liu , Q. , Tisdale , J. et al. ( 2015 ). Optically tunable Seebeck effect from intramolecular proton-transfer materials in organic vertical thin-film thermoelectric device . Org. Electron. 26 : 117 – 120 .
- Huang , D. , Zou , Y. , Jiao , F. et al. ( 2015 ). Interface-located photothermoelectric effect of organic thermoelectric materials in enabling NIR detection . ACS Appl. Mater. Interfaces 7 : 8968 – 8973 .
- Zaia , E.W. , Gordon , M.P. , Yuan , P. , and Urban , J.J. ( 2019 ). Progress and perspective: soft thermoelectric materials for wearable and internet-of-things applications . Adv. Electron. Mater. 5 : 1800823 .
- Guo , X. and Facchetti , A. ( 2020 ). The journey of conducting polymers from discovery to application . Nat. Mater. 19 : 922 – 928 .
- Pingel , P. and Neher , D. ( 2013 ). Comprehensive picture of p-type doping of P3HT with the molecular acceptor F(4)TCNQ . Phys. Rev. B 87 : 115209 .
- Yang , C.Y. , Jin , W.L. , Wang , J. et al. ( 2018 ). Enhancing the n-type conductivity and thermoelectric performance of donor-acceptor copolymers through donor engineering . Adv. Mater. 30 : 1802850 .
- Liu , J. , Qiu , L. , Alessandri , R. et al. ( 2018 ). Enhancing molecular n-type doping of donor-acceptor copolymers by tailoring side chains . Adv. Mater. 30 : 1704630 .
- Bubnova , O. , Khan , Z.U. , Wang , H. et al. ( 2014 ). Semi-metallic polymers . Nat. Mater. 13 : 190 – 194 .
- Zuo , G. , Abdalla , H. , and Kemerink , M. ( 2019 ). Conjugated polymer blends for organic thermoelectrics . Adv. Electron. Mater. 5 : 1800821 .
- Dai , X.J. , Meng , Q. , Zhang , F.J. et al. ( 2021 ). Electronic structure engineering in organic thermoelectric materials . J Energy Chem. 62 : 204 – 219 .
- Sun , J. , Yeh , M.L. , Jung , B.J. et al. ( 2010 ). Simultaneous increase in seebeck coefficient and conductivity in a doped poly(alkylthiophene) blend with defined density of states . Macromolecules 43 : 2897 – 2903 .
- Imanishi , Y. , Hattori , S. , Kakuta , A. , and Numata , S. ( 1993 ). Direct observation of an organic superlattice structure . Phys. Rev. Lett. 71 : 2098 – 2101 .
- Wan , C. , Gu , X. , Dang , F. et al. ( 2015 ). Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2 . Nat. Mater. 14 : 622 – 627 .
-
Kohno , S.
,
Yamashita , Y.
,
Kasuya , N.
et al. (
2020
).
Controlled steric selectivity in molecular doping towards closest-packed supramolecular conductors
.
Commun. Mater.
1
:
1
–
8
.
10.1038/s43246-020-00081-3 Google Scholar
- Gudjonsdottir , S. and Houtepen , A.J. ( 2020 ). Permanent electrochemical doping of quantum dots and semiconductor polymers . Adv. Funct. Mater. 30 : 2004789 .
- Xu , K. , Sun , H. , Ruoko , T.P. et al. ( 2020 ). Ground-state electron transfer in all-polymer donor-acceptor heterojunctions . Nat. Mater. 19 : 738 – 744 .
- Kippelen , B. ( 2020 ). Mutual electrical doping in polymers . Nat. Mater. 19 : 702 – 704 .
- Patil , A.O. , Ikenoue , Y. , Wudl , F. , and Heeger , A.J. ( 1987 ). Water-soluble conducting polymers . J. Am. Chem. Soc. 109 : 1858 – 1859 .
- Reilly , T.H. III , Hains , A.W. , Chen , H.-Y. et al. ( 2012 ). O2-Stable, n-type interfacial layer for organic electronics . Adv. Energy Mater. 2 : 455 – 460 .
- Russ , B. , Robb , M.J. , Brunetti , F.G. et al. ( 2014 ). Power factor enhancement in solution-processed organic n-type thermoelectrics through molecular design . Adv. Mater. 26 : 3473 – 3477 .
- Mai , C.-K. , Schlitz , R.A. , Su , G.M. et al. ( 2014 ). Side-chain effects on the conductivity, morphology, and thermoelectric properties of self-doped narrow-band-gap conjugated polyel ectrolytes . J. Am. Chem. Soc. 136 : 13478 – 13481 .
- Bubnova , O. , Khan , Z.U. , Malti , A. et al. ( 2011 ). Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene) . Nat. Mater. 10 : 429 – 433 .
- Kroon , R. , Ryan , J.D. , Kiefer , D. et al. ( 2017 ). Bulk doping of millimeter-thick conjugated polymer foams for plastic thermoelectrics . Adv. Funct. Mater. 27 : 1704183 .