Measurement Techniques of Thermoelectric-related Performance
Jiamin Ding
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190 China
University of Chinese Academy of Sciences, School of Chemical Sciences, Beijing, 100049 China
Search for more papers by this authorZhiyi Li
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190 China
Search for more papers by this authorFengjiao Zhang
University of Chinese Academy of Sciences, School of Chemical Sciences, Beijing, 100049 China
Search for more papers by this authorYe Zou
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190 China
Search for more papers by this authorChong-an Di
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190 China
Search for more papers by this authorJiamin Ding
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190 China
University of Chinese Academy of Sciences, School of Chemical Sciences, Beijing, 100049 China
Search for more papers by this authorZhiyi Li
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190 China
Search for more papers by this authorFengjiao Zhang
University of Chinese Academy of Sciences, School of Chemical Sciences, Beijing, 100049 China
Search for more papers by this authorYe Zou
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190 China
Search for more papers by this authorChong-an Di
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190 China
Search for more papers by this authorDaoben Zhu
CAS Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190 China
Search for more papers by this authorSummary
Accurate measurement of key parameters is essential for correctly evaluating performance of organic thermoelectric (OTE) materials. In this chapter, we systematically introduce the measurement principles, methods, and error analysis of the key parameters, namely, the electrical conductivity, Seebeck coefficient, and thermal conductivity of OTE materials and devices. Of particular note, we highlight the importance of simultaneously measuring the three key parameters for an accurate evaluation of TE performance. In addition, the characterization methods of the carrier concentration and electronic structure are introduced, because they play a key role in determining TE parameters. Finally, key aspects for future development of measuring technology in OTE materials are put forward.
References
- Kim , B. , Shin , H. , Park , T. et al. ( 2013 ). NIR-sensitive poly(3,4-ethylenedioxyselenophene) derivatives for transparent photo-thermo-electric converters . Adv. Mater. 25 : 5483 – 5489 .
- Reenen , S. v. and Kemerink , M. ( 2014 ). Correcting for contact geometry in Seebeck coefficient measurements of thin film devices . Org. Electron. 15 : 2250 – 2255 .
- van der Pauw , L.J. ( 1958 ). A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape . Philips Tech. Rev. 20 : 220 – 224 .
- Chwang , R. , Smith , B.J. , and Crowell , C.R. ( 1974 ). Contact size effects on the van der Pauw method for resistivity and hall coefficient measurement . Solid State Electron. 17 : 1217 – 1227 .
- Broch , K. , Venkateshvaran , D. , Lemaur , V. et al. ( 2017 ). Measurements of ambipolar seebeck coefficients in high-mobility diketopyrrolopyrrole donor–acceptor copolymers . Adv. Electron. Mater. 3 : 1700225 .
- Boukai , A.I. , Bunimovich , Y. , Tahir-Kheli , J. et al. ( 2008 ). Silicon nanowires as efficient thermoelectric materials . Nature 451 : 168 – 171 .
- Preissler , N. , Bierwagen , O. , Ramu , A.T. , and Speck , J.S. ( 2013 ). Electrical transport, electrothermal transport, and effective electron mass in single-crystalline In 2 O 3 films . Phys. Rev. B 88 : 085305 .
- Zhu , Q. , Kim , H.S. , and Ren , Z. ( 2017 ). A rapid method to extract Seebeck coefficient under a large temperat ure difference . Rev. Sci. Instrum. 88 : 094902 .
- Christofferson , K.M.J. , Ezzahri , Y. , Shabani , J. et al. ( 2008 ). Microscale and nanoscale thermal characterization techniques . J. Electron. Packag. 130 : 041101 .
- Agrawal , M. , Vasyuchka , V.I. , Serga , A.A. et al. ( 2013 ). Direct measurement of magnon temperature: new insight into magnon-phonon coupling in magnetic insulators . Phys. Rev. Lett. 111 : 107204 .
- Erickson , K.J. , Léonard , F. , Stavila , V. et al. ( 2015 ). Thin film thermoelectric metal–organic framework with high seebeck coefficient and low thermal conductivity . Adv. Mater. 27 : 3453 – 3459 .
- Iwanaga , S. , Toberer , E.S. , LaLonde , A. , and Snyder , G.J. ( 2011 ). A high temperature apparatus for measurement of the Seebeck coefficient . Rev. Sci. Instrum. 82 : 063905 .
- Borup , K.A. , de Boor , J. , Wang , H. et al. ( 2015 ). Measuring thermoelectric transport properties of materials . Energy Environ. Sci. 8 : 423 – 435 .
- Abad , B. , Borca-Tasciuc , D.A. , and Martin-Gonzalez , M.S. ( 2017 ). Non-contact methods for thermal properties measurement . Renewable Sustainable Energy Rev. 76 : 1348 – 1370 .
- Pope , A.L. , Zawilski , B. , and Tritt , T.M. ( 2001 ). Description of removable sample mount apparatus for rapid thermal conductivity measurements . Cryogenics 41 : 725 – 731 .
- Sundqvist , B. ( 1991 ). Thermal diffusivity measurements by ngstrfm's method in a fluid environment . Int. J. Thermophys. 12 : 191 – 206 .
- Wei , G. , Liu , Y. , Zhang , X. et al. ( 2011 ). Thermal conductivities study on silica aerogel and its composite insulation materials . Int. J. Heat Mass Transfer 54 : 2355 – 2366 .
- Taha-Tijerina , J. , Castaños-Guitrón , B. , Peña-Parás , L. et al. ( 2019 ). Impact of silicate contaminants on tribological and thermal transport performance of greases . Wear 426-427 : 862 – 867 .
- Zawilski , B.M. , Littleton , R.T. , and Tritt , T.M. ( 2001 ). Description of the parallel thermal conductance technique for the measurement of the thermal conductivity of small diameter samples . Rev. Sci. Instrum. 72 : 1770 – 1774 .
- Weathers , A. , Khan , Z.U. , Brooke , R. et al. ( 2015 ). Significant electronic thermal transport in the conducting polymer poly(3,4-ethylenedioxythiophene) . Adv. Mater. 27 : 2101 – 2106 .
- Swartz , E.T. and Pohl , R.O. ( 1987 ). Thermal resistance at interfaces . Appl. Phys. Lett. 51 : 2200 – 2202 .
- Jolly , M.R. , Amsden , C.A. , Giiman , S.E. et al. ( 1989 ). Thermal conductivity of dielectric thin films . J. Appl. Phys. 66 : 4230 – 4242 .
- Wilson , A.A. , Munoz Rojo , M. , Abad , B. et al. ( 2015 ). Thermal conductivity measurements of high and low thermal conductivity films using a scanning hot probe method in the 3omega mode and novel calibration strategies . Nanoscale 7 : 15404 – 15412 .
- Park , B.K. , Park , J. , and Kim , D. ( 2010 ). Note: three-omega method to measure thermal properties of subnanoliter liquid samples . Rev. Sci. Instrum. 81 : 066104 .
- Wang , H. and Sen , M. ( 2009 ). Analysis of the 3-omega method for thermal conductivity measurement . I nt. J. Heat Mass Transfer 52 : 2102 – 2109 .
- Tong , T. and Majumdar , A. ( 2006 ). Reexamining the 3-omega technique for thin film thermal characterization . Rev. Sci. Instrum. 77 : 104902 .
- Kyaw , A.K.K. , Yemata , T.A. , Wang , X. et al. ( 2018 ). Enhanced thermoelectric performance of PEDOT:PSS films by sequential post-treatment with formamide . Macromol. Mater. Eng. 303 : 1700429 .
- He , Y. ( 2005 ). Rapid thermal conductivity measurement with a hot disk sensor . Thermochim. Acta 436 : 130 – 134 .
- Gustafsson , S.E. ( 1991 ). Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials . Rev. Sci. Instrum. 62 : 797 – 804 .
- Wang , H. , Chu , W. , and Chen , G. ( 2019 ). A brief review on measuring methods of thermal conductivity of organic and hybrid thermoelectric materials . Adv. Electron. Mater. 5 : 1900167.
- Maldonado , O. ( 1992 ). Pulse method for simultaneous measurement of electric thermopower and heat conductivity at low temperatures . Cryogenics 32 : 908 – 912 .
- Zhao , D. , Qian , X. , Xiaokun , G. et al. ( 2016 ). Measurement techniques for thermal conductivity and interfacial thermal conductance of bulk and thin film materials . J. Electron. Packag. 138 : 040802 .
- Cahill , D.G. ( 1990 ). Thermal conductivity measurement from 30 to 750 K: the 3ω method . Rev. Sci. Instrum. 61 : 802 – 808 .
- Olson , B.W. , Graham , S. , and Chen , K. ( 2005 ). A practical extension of the 3ω method to multilayer structures . Rev. Sci. Instrum. 76 : 053901 .
- Su , Z. , Freedman , J.P. , Leach , J.H. et al. ( 2013 ). The impact of film thickness and substrate surface roughness on the thermal resistance of aluminum nitride nucleation layers . J. Appl. Phys. 113 : 213502 .
- Boussatour , C. ( 2018 ). Measurement of the thermal conductivity . Polym. Test. 70 : 503–510 .
- Zong , Z.-X. , Qiu , Z.-J. , Zhang , S.-L. et al. ( 2011 ). A generalized 3ω method for extraction of thermal conductivity in thin films . J. Appl. Phys. 109 : 063502 .
- Ikeda , M.S. , Euchner , H. , Yan , X. et al. ( 2019 ). Kondo-like phonon scattering in thermoelectric clathrates . Nat. Commun. 10 : 887.
- Faghani , F. ( 2010 ). Thermal Conductivity Measurement of PEDOT:PSS by 3-omega Technique . Linköping : Linköping University .
- Borca-Tasciuc , T. , Kumar , A.R. , and Chen , G. ( 2001 ). Data reduction in 3ω method for thin-film thermal conductivity determination . Rev. Sci. Instrum. 72 : 2139 – 2147 .
- Kim , G.H. , Shao , L. , Zhang , K. , and Pipe , K.P. ( 2013 ). Engineered doping of organic semiconductors for enhanced thermoelectric efficiency . Nat. Mater. 12 : 719 – 723 .
- Jiang , P. , Qian , X. , and Yang , R. ( 2018 ). Tutorial: time-domain thermoreflectance (TDTR) for thermal property characterization of bulk and thin film materials . J. Appl. Phys. 124 : 161103 .
- Liu , J. , Wang , X. , Li , D. et al. ( 2015 ). Thermal conductivity and elastic constants of PEDOT:PSS with high electric al conductivity . Macromolecules 48 : 585 – 591 .
- Schmidt , A. , Chiesa , M. , Chen , X. , and Chen , G. ( 2008 ). An optical pump-probe technique for measuring the thermal conductivity of liquids . Rev. Sci. Instrum. 79 : 064902 .
- Schmidt , A.J. , Chen , X. , and Chen , G. ( 2008 ). Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance . Rev. Sci. Instrum. 79 : 114902 .
- Parker , W.J. , Jenkins , R.J. , Butler , C.P. , and Abbott , G.L. ( 1961 ). Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity . J. Appl. Phys. 32 : 1679 – 1684 .
- Lee , S. and Kim , D. ( 2017 ). The evaluation of cross-plane/in-plane thermal diffusivity using laser flash apparatus . Thermochim. Acta 653 : 126 – 132 .
-
Czichos , H.
,
Saito , T.
, and
Smith , L.
(
2006
).
Springer Handbook of Materials Measurement Methods
.
Berlin
:
Springer
.
10.1007/978-3-540-30300-8 Google Scholar
- Yao , Q. , Wang , Q. , Wang , L. , and Chen , L. ( 2014 ). Abnormally enhanced thermoelectric transport properties of SWNT/PANI hybrid films by the strengthened PANI molecular ordering . Energy Environ. Sci. 7 : 3801 – 3807 .
- Linseis , V. , Völklein , F. , Reith , H. et al. ( 2016 ). Platform for in-plane ZT measurement and Hall coefficient determination of thin films in a temperature range from 120 K up to 450 K . J. Mater. Res. 31 : 3196 – 3204 .
- Linseis , V. , Völklein , F. , Reith , H. et al. ( 2018 ). Advanced platform for the in-plane ZT measurement of thin films . Rev. Sci. Instrum. 89 : 015110 .
- Linseis , V. , Völklein , F. , Reith , H. et al. ( 2019 ). Thermoelectric properties of Au and Ti nanofilms, characterized with a novel measurement platform . Mater. Today Proc. 8 : 517 – 522 .
- Völklein , F. , Reith , H. , and Meier , A. ( 2013 ). Measuring methods for the investigation of in-plane and cross-plane thermal conductivity of thin films . Phys. Stat. Sol. A-Appl. Res. 210 : 106 – 118 .
- Di , C.A. , Yu , G. , Liu , Y. , and Zhu , D. ( 2007 ). High-performance organic field-effect transistors: Molecular design, device fabrication, and physical properties . J. Phys. Chem. B 111 : 14083 – 14096 .
- Shi , W. , Qu , S. , Chen , H. et al. ( 2018 ). One-step synthesis and enhanced thermoelectric properties of polymer-quantum dot composite films . Angew. Chem. Int. Ed. 57 : 8037 – 8042 .
- Chen , Y. , Yi , H.T. , and Podzorov , V. ( 2016 ). High-resolution ac measurements of the hall effect in organic field-effect transistors . Phys. Rev. Appl. 5 : 034008 .
- Ohashi , C. , Izawa , S. , Shinmura , Y. et al. ( 2017 ). Hall effect in bulk-doped organic single crystals . Adv. Mater. 29 : 1605619 .
- Kang , K. , Watanabe , S. , Broch , K. et al. ( 2016 ). 2D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion . Nat. Mater. 15 : 896 – 902 .
- Liang , Z. , Choi , H.H. , Luo , X. et al. ( 2021 ). N-type charge transport in heavily p-doped polymers . Nat. Mater. 20 : 518 – 524 .
- Ding , J. , Liu , Z. , Zhao , W. et al. ( 2019 ). Selenium-substituted diketopyrrolopyrrole polymer for high-perfor mance p-type organic thermoelectric materials . Angew. Chem. Int. Ed. 58 : 18994–18999 .
- Dai , X. , Meng , Q. , Zhang , F. et al. ( 2021 ). Electronic structure engineering in organic thermoelectric materials . J. Energy Chem. 62 : 204 – 219 .
- Ishii , H. , Sugiyama , K. , Ito , E. , and Seki , K. ( 1999 ). Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces . Adv. Mater. 11 : 605 – 625 .
- Koch , N. ( 2008 ). Energy levels at interfaces between metals and conjugated organic molecules . J. Phys. Condens. Matter 20 : 184008 .
- Chen , W. , Qi , D. , Gao , X. , and Wee , A.T.S. ( 2009 ). Surface transfer doping of semiconductors . Prog. Surf. Sci. 84 : 279 – 321 .
- Braun , S. , Salaneck , W.R. , and Fahlman , M. ( 2009 ). Energy-level alignment at organic/metal and organic/organic interfaces . Adv. Mater. 21 : 1450 – 1472 .
- Chen , W. , Qi , D.-C. , Huang , H. et al. ( 2011 ). Organic–organic heterojunction interfaces: effect of molecular orientation . Adv. Funct. Mater. 21 : 410 – 424 .
- Djurovich , P.I. , Mayo , E.I. , Forrest , S.R. , and Thompson , M.E. ( 2009 ). Measurement of the lowest unoccupied molecular orbital energies of molecular organic semiconductors . Org. Electron. 10 : 515 – 520 .
- Yoshida , H. ( 2015 ). Principle and application of low energy inverse photoemission spectroscopy: a new method for measuring unoccupied states of organic semiconductors . J. Electron. Spectrosc. Relat. Phenom. 204 : 116 – 124 .
- Koch , N. , Rajagopal , A. , Ghijsen , J. et al. ( 2000 ). Bipolaron: the stable charged species in n-doped p-sexiphenyl . J. Phys. Chem. B 104 : 1434 – 1438 .
- Iucci , G. , Xing , K. , Lögdlund , M. et al. ( 1995 ). Polaron to bipolaron transition in a conjugated polymer. Rubidium-doped poly(p-phenylenevinylene) . Chem. Phys. Lett. 244 : 139 – 144 .
- Bubnova , O. , Khan , Z.U. , Malti , A. et al. ( 2011 ). Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene) . Nat. Mater. 10 : 429 – 433 .
- Bubnova , O. , Khan , Z.U. , Wang , H. et al. ( 2014 ). Semi-metallic polymers . Nat. Mater. 13 : 190 – 194 .
- Gaul , C. , Hutsch , S. , Schwarze , M. et al. ( 2018 ). Insight into doping efficiency of organic semiconductors from the analysis of the density of states in n-doped C60 and ZnPc . Nat. Mater. 17 : 439 – 444 .
- Yoshida , H. ( 2012 ). Near-ultraviolet inverse photoemission spectroscopy using ultra-low energy electrons . Chem. Phys. Lett. 539 : 180 – 185 .
- Yoshida , H. ( 2013 ). Low-energy inverse photoemission spectroscopy using a high-resolution grating spectrometer in the near ultraviolet range . Rev. Sci. Instrum. 84 : 103901 .
- Yoshida , H. ( 2014 ). Note: Low energy inverse photoemission spectroscopy apparatus . Rev. Sci. Instrum. 85 : 016101 .
- Kirihata , H. and Uda , M. ( 1981 ). Externally quenched air counter for low-energy electron emission measurements . Rev. Sci. Instrum. 52 : 68 – 70 .
- Davis , R.J. , Lloyd , M.T. , Ferreira , S.R. et al. ( 2011 ). Determination of energy level alignment at interfaces of hybrid and organic solar cells under ambient environment . J. Mater. Chem. 21 : 1721 – 1729 .
- Honda , M. , Kanai , K. , Komatsu , K. et al. ( 2007 ). Atmospheric effect of air, N 2 , O 2 , and water vapor on the ionization energy of titanyl phthalocyanine thin film studied by photoemission yield spectroscopy . J. Appl. Phys. 102 : 103704 .
- Nakayama , Y. , Machida , S. , Tsunami , D. et al. ( 2008 ). Photoemission measurement of extremely insulating materials: capacitive photocurrent detection in photoelectron yield spectroscopy . Appl. Phys. Lett. 92 : 153306 .
- Monjushiro , H. , Harada , K. , and Haga , M. -a. ( 2003 ). Characterization of Langmuir monolayers of the amphiphilic Ru complex at the air/water interface by ultraviolet photoelectron yield spectroscopy . Langmuir 19 : 9226 – 9230 .
-
Takeda , Y.
,
Ezawa , H.
,
Miyauchi , T.
et al. (
2015
).
Electronic structure of chlorophyll a solution investigated by photoelectron yield spectroscopy
.
Appl. Mech. Mater.
763
:
58
–
60
.
10.4028/www.scientific.net/AMM.763.58 Google Scholar
- Kroon , R. , Kiefer , D. , Stegerer , D. et al. ( 2017 ). Polar side chains enhance processability, electrical conductivity, and thermal stability of a molecularly p-doped polythiophene . Adv. Mater. 29 : 1700930 .
- Gregory , S.A. , Menon , A.K. , Ye , S. et al. ( 2018 ). Effect of heteroatom and doping on the thermoelectric properties of poly(3-alkylchalcogenophenes) . Adv. Energy Mater. 8 : 1802419 .
- Hamidi-Sakr , A. , Biniek , L. , Bantignies , J.-L. et al. ( 2017 ). A versatile method to fabricate highly In-plane aligned conducting polymer films with anisotropic charge transport and thermoelectric properties: the key role of alkyl side chain layers on the doping mechanism . Adv. Funct. Mater. 27 : 1700173 .
- Patel , S.N. , Glaudell , A.M. , Peterson , K.A. et al. ( 2017 ). Morphology controls the thermoelectric power factor of a doped semiconducting polymer . Sci. Adv. 3 : e1700434 .
- Mendez , H. , Heimel , G. , Winkler , S. et al. ( 2015 ). Charge-transfer crystallites as molecular electrical dopants . Nat. Commun. 6 : 8560 .
- Salzmann , I. , Heimel , G. , Oehzelt , M. et al. ( 2016 ). Molecular electrical doping of organic semiconductors: fundamental mechanisms and emerging dopant design rules . Acc. Chem. Res. 49 : 370 – 378 .
- Yoo , D. , Lee , J.J. , Park , C. et al. ( 2016 ). N-type organic thermoelectric materials based on polyaniline doped with the aprotic ionic liquid 1-ethyl-3-methylimidazolium ethyl sulfate . RSC Adv. 6 : 37130 – 37135 .
- Liu , J. , Qiu , L. , Portale , G. et al. ( 2017 ). N-type organic thermoelectrics: improved power factor by tailoring host-dopant miscibility . Adv. Mater. 29 : 1701641 .
- Cho , C. , Bittner , N. , Choi , W. et al. ( 2019 ). Thermally enhanced n-type thermoelectric behavior in completely organic graphene oxide-based thin films . Adv. Electron. Mater. 5 : 1800465 .
- Park , J. , Bang , D. , Jang , K. et al. ( 2012 ). The work function of doped polyaniline nanoparticles observed by Kelvin probe force microscopy . Nanotechnology 23 : 365705 .
- Kundu , B. , Chakrabarti , S. , Matsushita , M.M. , and Pal , A.J. ( 2016 ). Energy levels of metal porphyrins upon molecular alignment during layer-by-layer electrostatic assembly: scanning tunneling spectroscopy vis-à-vis optical spectroscopy . RSC Adv. 6 : 47410 – 47417 .
- Kong , X.-H. , Wang , M. , Lei , S.-B. et al. ( 2006 ). Electronic sensory behavior of titanylphthalocyanine revealed by scanning tunneling spectroscopy and cyclic voltammetry methods . J. Mater. Chem. 16 : 4265 – 4269 .
- Aich , R.B. , Blouin , N. , Bouchard , A. , and Leclerc , M. ( 2009 ). Electrical and thermoelectric properties of poly(2,7-carbazole) derivatives . Chem. Mater. 21 : 751 – 757 .
- Tkachov , R. , Stepien , L. , Grafe , R. et al. ( 2018 ). Polyethenetetrathiolate or polytetrathiooxalate? Improved synthesis, a comparative analysis of a prominent thermoelectric polymer and implications to the charge transport mechanism . Polym. Chem. 9 : 4543 – 4555 .
- Li , H. , Plunkett , E. , Cai , Z. et al. ( 2019 ). Dopant-dependent increase in Seebeck coefficient and electrical conductivity in blended polymers with offset carrier energies . Adv. Electron. Mater. 5 : 1800618 .
- Zhang , Q. , Sun , Y.M. , Qin , Y.K. et al. ( 2016 ). Two soluble polymers with lower ionization potentials: doping and thermoelectric properties . J. Mater. Chem. A 4 : 1432 – 1439 .
- Sun , J. , Yeh , M.L. , Jung , B.J. et al. ( 2010 ). Simultaneous increase in Seebeck coefficient and conductivity in a doped poly(alkylthiophene) blend with defined density of states . Macromolecules 43 : 2897 – 2903 .
- Jung , I.H. , Hong , C.T. , Lee , U.-H. et al. ( 2017 ). High thermoelectric power factor of a diketopyrrolopyrrole-based low bandgap polymer via finely tuned doping engineering . Sci. Rep. 7 : 44704 .
- Chen , J. , Wang , D. , and Shuai , Z. ( 2012 ). First-principles predictions of thermoelectric figure of merit for organic materials: deformation potential approximation . J. Chem. Theory Comput. 8 : 3338 – 3347 .
- Wang , D. , Tang , L. , Long , M. , and Shuai , Z. ( 2009 ). First-principles investigation of organic semiconductors for thermoelectric applications . J. Chem. Phys. 131 : 224704 .