Visible-Light Photocatalytic Degradation of Heavy Metal Ion Hexavalent Chromium [ Cr ( VI )]
Priya Rawat
Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Sector 125, Noida, 201313, Uttar Pradesh, India
Search for more papers by this authorHarshita Chawla
Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Sector 125, Noida, 201313, Uttar Pradesh, India
Search for more papers by this authorSeema Garg
Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Sector 125, Noida, 201313, Uttar Pradesh, India
Search for more papers by this authorPriya Rawat
Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Sector 125, Noida, 201313, Uttar Pradesh, India
Search for more papers by this authorHarshita Chawla
Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Sector 125, Noida, 201313, Uttar Pradesh, India
Search for more papers by this authorSeema Garg
Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Sector 125, Noida, 201313, Uttar Pradesh, India
Search for more papers by this authorSabu Thomas
Mahatma Gandhi University, Priyadarshini Hills P.O., Kottayam, India
Search for more papers by this authorMerin Sara Thomas
Mar Thoma College, Kuttapuzha P.O., Tiruvalla, India
Search for more papers by this authorLaly A Pothen
Mahatma Gandhi University, Priyadarshini Hills P.O., Kottayam, India
Search for more papers by this authorSummary
Among various toxic elements, hexavalent chromium is also found as a toxic element in water. If its concentration is too high, it can harm people's health and even lead to cancer. So, there is a need for an effective method for removal of these contaminants from water. One of the effective methods to get rid of this toxic hexavalent chromium [Cr(VI)] is to convert it into much safer form, which is trivalent chromium [Cr(III)]. This conversion can be successfully carried out by using photoreduction. This review mainly focuses on basic mechanism involving photocatalysis using titania (TiO 2 ), and its modifications with metal oxides, metal sulfide, and noble metals and also by combination with deionization technique. The results showed enhanced photocatalytic activity due to efficient separation of photogenerated charge carriers, and a decrease in bandgap leads to shifting of adsorption spectra from UV to visible region with higher stability of photocatalyst.
References
- Acharya , R. , Naik , B. , and Parida , K. ( 2018 ). Cr(VI) remediation from aqueous environment through modified-TiO 2 -mediated photocatalytic reduction . Beilstein Journal of Nanotechnology 9 ( 1 ): 1448 – 1470 .
- Hou , S. , Xu , X. , Wang , M. et al. ( 2018 ). Synergistic conversion and removal of total Cr from aqueous solut ion by photocatalysis and capacitive deionization . Chemical Engineering Journal 337 : 398 – 404 .
- Ahemad , M. ( 2014 ). Bacterial mechanisms for Cr(VI) resistance and reduction: an overview and recent advances . Folia Microbiologica 59 ( 4 ): 321 – 332 .
- Zhang , Y. , Li , Q. , Sun , L. et al. ( 2011 ). Batch adsorption and mechanism of Cr(VI) removal from aqueous solution by polyaniline/humic acid nanocomposite . Journal of Environmental Engineering 137 ( 12 ): 1158 – 1164 .
- Mphela , R.K. , Msimanga , W. , Kwena , Y. et al. ( 2016 ). Photocatalytic degradation of salicylic acid and reduction of Cr(VI) using TiO 2 . International Conference of 5th International Conference on Advances in Engineering and Technology (ICAET'2016) . New York, United State; 8–9 June 2016, pp. 30–35.
- Liu , W. , Ni , J. , and Yin , X. ( 2014 ). Synergy of photocatalysis and adsorption for simultaneous removal of Cr(VI) and Cr(III) with TiO 2 and titanate nanotubes . Water Research 53 : 12 – 25 .
- Lu , A. , Zhong , S. , Chen , J. et al. ( 2006 ). Removal of Cr(VI) and Cr(III) from aqueous solutions and industrial wastewaters by natural clino-pyrrhotite . Environmental Science & Technology 40 ( 9 ): 3064 – 3069 .
- Cummings , D.E. et al. ( 2007 ). Reduction of Cr(VI) under acidic conditions by the facultative Fe(III)-reducing bacterium Acidiphilium cryptum . Environmental Science & Technology 41 ( 1 ): 146 – 152 .
- Elangovan , R. et al. ( 2006 ). Reduction of Cr(VI) by a Bacillus sp . Biotechnology Letters 28 ( 4 ): 247 – 252 .
-
Leong , K.H.
,
Sim , L.C.
,
Pichiah , S.
et al. (
2016
).
Light driven nanomaterials for removal of agricultural toxins
. In:
Nanoscience in Food and Agriculture 3
(ed.
S. Ranjan
et al.),
225
–
242
.
Springer
.
10.1007/978-3-319-48009-1_9 Google Scholar
- Ibhadon , A.O. and Fitzpatrick , P. ( 2013 ). Heterogeneous photocatalysis: recent advances and applications . Catalysts 3 ( 1 ): 189 – 218 .
- Chang , H.T. , Wu , N.-M. , and Zhu , F. ( 2000 ). A kinetic model for photocatalytic degradation of organic contaminants in a thin-film TiO 2 catalyst . Water Research 34 ( 2 ): 407 – 416 .
- Zhang , Y. , Chen , Z. , Liu , S. et al. ( 2013 ). Size effect induced activity enhancement and anti-photocorrosion of reduced graphene oxide/ZnO composites for degradation of organic dyes and reduction of Cr(VI) in water . Applied Catalysis B: Environmental 140 : 598 – 607 .
- Pu , S. , Hou , Y. , Chen , H. et al. ( 2018 ). An efficient photocatalyst for fast reduction of Cr(VI) by ultra-trace silver enhanced titania in aqueous solution . Catalysts 8 ( 6 ): 251 .
- Naimi-Joubani , M. , Shirzad-Siboni , M. , Yang , J.K. et al. ( 2015 ). Photocatalytic reduction of hexavalent chromium with illuminated ZnO/TiO 2 composite . Journal of Industrial and Engineering Chemistry 22 : 317 – 323 .
-
Ku , Y.
,
Huang , Y.-H.
, and
Chou , Y.-C.
(
2011
).
Preparation and characterization of ZnO/TiO
2
for the photocatalytic reduction of Cr(VI) in aqueous solution
.
Journal of Molecular Catalysis A: Chemical
342
:
18
–
22
.
10.1016/j.molcata.2011.04.003 Google Scholar
- Challagulla , S. , Nagarjuna , R. , Ganesan , R. et al. ( 2016 ). Acrylate-based polymerizable sol–gel synthesis of magnetically recoverable TiO 2 supported Fe 3 O 4 for Cr(VI) photoreduction in aerobic atmosphere . ACS Sustainable Chemistry & Engineering 4 ( 3 ): 974 – 982 .
- Yang , L. , Xiao , Y. , Liu , S. et al. ( 2010 ). Photocatalytic reduction of Cr(VI) on WO 3 doped long TiO 2 nanotube arrays in the presence of citric acid . Applied Catalysis B: Environmental 94 ( 1, 2 ): 142 – 149 .
- Yang , J. , Dai , J. , and Li , J. ( 2013 ). Visible-light-induced photocatalytic reduction of Cr(VI) with coupled Bi 2 O 3 /TiO 2 photocatalyst and the synergistic bisphenol A oxidation . Environmental Science and Pollution Research 20 ( 4 ): 2435 – 2447 .
- Abdullah , H. , Kuo , D.-H. , and Chen , Y.-H. ( 2016 ). High-efficient n-type TiO 2 /p-type Cu 2 O nanodiode photocatalyst to detoxify hexavalent chromium under visible light irradiation . Journal of Materials Science 51 ( 17 ): 8209 – 8223 .
- Ku , Y. , Lin , C.-N. , and Hou , W.-M. ( 2011 ). Characterization of coupled NiO/TiO 2 photocatalyst for the photocatalytic reduction of Cr(VI) in aqueous solution . Journal of Molecular Catalysis A: Chemical 349 ( 1, 2 ): 20 – 27 .
- Lahmar , H. , Benamira , M. , Akika , F.Z. et al. ( 2017 ). Reduction of chromium(VI) on the hetero-system CuBi 2 O 4 /TiO 2 under solar light . Journal of Physics and Chemistry of Solids 110 : 254 – 259 .
- Rekhila , G. , Trari , M. , and Bessekhouad , Y. ( 2017 ). Characterization and application of the hetero-junction ZnFe 2 O 4 /TiO 2 for Cr(VI) reduction under visible light . Applied Water Science 7 ( 3 ): 1273 – 1281 .
- Gao , X. , Liu , X. , Zhu , Z. et al. ( 2016 ). Enhanced photoelectrochemical and photocatalytic behaviors of MFe 2 O 4 (M = Ni, Co, Zn and Sr) modified TiO 2 nanorod arrays . Scientific Reports 6 : 30543 .
- Liu , S. , Zhang , N. , Tang , Z.R. et al. ( 2012 ). Synthesis of one-dimensional CdS@TiO 2 core–shell nanocomposites photocatalyst for selective redox: the dual role of TiO 2 shell . ACS Applied Materials & Interfaces 4 ( 11 ): 6378 – 6385 .
- Chen , Z. and Xu , Y.-J. ( 2013 ). Ultrathin TiO 2 layer coated-CdS spheres core–shell nanocomposite with enhanced visible-light photoactivity . ACS Applied Materials & Interfaces 5 ( 24 ): 13353 – 13363 .
- Liu , X. , Pan , L. , Sun , Z. et al. ( 2014 ). CdS sensitized TiO 2 film for photocatalytic reduction of Cr(VI) by microwave-assisted chemical bath deposition method . Journal of Alloys and Compounds 583 : 390 – 395 .
- Zhang , Y.C. , Li , J. , and Xu , H.Y. ( 2012 ). One-step in situ solvothermal synthesis of SnS 2 /TiO 2 nanocomposites with high performance in visible light-driven photocatalytic reduction of aqueous Cr(VI) . Applied Catalysis B: Environmental 123 : 18 – 26 .
- Lei , X. , Xue , X. , and Yang , H. ( 2014 ). Preparation and characterization of Ag-doped TiO 2 nanomaterials and their photocatalytic reduction of Cr(VI) under visible light . Applied Surface Science 321 : 396 – 403 .
- Zhang , D. , Xu , G. , and Chen , F. ( 2015 ). Hollow spheric Ag–Ag 2 S/TiO 2 composite and its application for photocatalytic reduction of Cr(VI) . Applied Surface Science 351 : 962 – 968 .
- Liu , X. , Pan , L. , Lv , T. et al. ( 2012 ). Sol–gel synthesis of Au/N–TiO 2 composite for photocatalytic red uction of Cr(VI) . RSC Advances 2 ( 9 ): 3823 – 3827 .
- Tanaka , A. , Nakansihi , K. , Hamada , R. et al. ( 2013 ). Simultaneous and stoichiometric water oxidation and Cr(VI) reduction in aqueous suspensions of functionalized plasmonic photocatalyst Au/TiO 2 –Pt under irradiation of green light . ACS Catalysis 3 ( 8 ): 1886 – 1891 .
- Wang , W. , Lai , M. , Fang , J. et al. ( 2018 ). Au and Pt selectively deposited on {0 0 1}-faceted TiO 2 toward SPR enhanced photocatalytic Cr(VI) reduction: the influence of excitation wavelength . Applied Surface Science 439 : 430 – 438 .
- Cai , J. , Wu , X. , Li , S. et al. ( 2017 ). Controllable location of Au nanoparticles as cocatalyst onto TiO 2 @CeO 2 nanocomposite hollow spheres for enhancing photocatalytic activity . Applied Catalysis B: Environmental 201 : 12 – 21 .
- Li , S. , Cai , J. , Wu , X. et al. ( 2018 ). TiO 2 @Pt@CeO 2 nanocomposite as a bifunctional catalyst for enhancing photo-reduction of Cr(VI) and photo-oxidation of benzyl alcohol . Journal of Hazardous Materials 346 : 52 – 61 .
- Zhou , H. ( 2013 ). Photocatalytic reduction of hexavalent chromium in aqueous solutions by TiO 2 PAN nanofibers . Master's thesis. University of Missouri, Columbia.
- Qin , B. , Zhao , Y. , Li , H. et al. ( 2015 ). Facet-dependent performance of Cu 2 O nanocrystal for photocatalytic reduction of Cr(VI) . Chinese Journal of Catalysis 36 ( 8 ): 1321 – 1325 .
- Zhong , J. , Wang , Q.Y. , Zhou , J. et al. ( 2016 ). Highly efficient photoelectrocatalytic removal of RhB and Cr(VI) by Cu nanoparticles sensitized TiO 2 nanotube arrays . Applied Surface Science 367 : 342 – 346 .
- Velegraki , G. , Miao , J. , Drivas , C. et al. ( 2018 ). Fabrication of 3D mesoporous networks of assembled CoO nanoparticles for efficient photocatalytic reduction of aqueous Cr(VI) . Applied Catalysis B: Environmental 221 : 635 – 644 .
- Kobayashi , M. and Miyoshi , K. ( 2007 ). WO 3 –TiO 2 monolithic catalysts for high temperature SCR of NO by NH 3 : influence of preparation method on structural and physico-chemical properties, activity and durability . Applied Catalysis B: Environmental 72 ( 3, 4 ): 253 – 261 .
- Akurati , K.K. , Vital , A. , Dellemann , J.P. et al. ( 2008 ). Flame-made WO 3 /TiO 2 nanoparticles: relation between surface acidity, structure and photocatalytic activity . Applied Catalysis B: Environmental 79 ( 1 ): 53 – 62 .
- Harish , K. , Naik , H.S.B. , Kumar , P.N.P. et al. ( 2013 ). Optical and photocatalytic properties of solar light active Nd-substituted Ni ferrite catalysts: for environmental protection . ACS Sustainable Chemistry & Engineering 1 ( 9 ): 1143 – 1153 .
- Gherbi , R. , Nasrallah , N. , Maachi , R. et al. ( 2011 ). Photocatalytic reduction of Cr(VI) on the new hetero-system CuAl 2 O 4 /TiO 2 . Journal of Hazardous Materials 186 ( 2, 3 ): 1124 – 1130 .
- Cui , B. , Lin , H. , Li , J.B. et al. ( 2008 ). Core–ring structured NiCo 2 O 4 nanoplatelets: synthesis, characterization, and electrocatalytic applications . Advanced Functional Materials 18 ( 9 ): 1440 – 1447 .
- Li , Y. , Hasin , P. , and Wu , Y. ( 2010 ). Ni x Co 3− x O 4 nanowire arrays for electrocatalytic oxygen evolution . Advanced Materials 22 ( 17 ): 1926 – 1929 .
- Xu , X. , Lu , R. , Zhou , X. et al. ( 2012 ). Novel mesoporous Zn x Cd 1− x S nanoparticles as highly efficient photoca talysts . Applied Catalysis B: Environmental 125 : 11 – 20 .
- Wang , Q. , Li , J. , Bai , Y. et al. ( 2014 ). Photochemical preparation of Cd/CdS photocatalysts and their efficient photocatalytic hydrogen production under visible light irradiation . Green Chemistry 16 ( 5 ): 2728 – 2735 .
- Bao , N. , Shen , L. , Takata , T. et al. ( 2008 ). Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible light . Chemistry of Materials 20 ( 1 ): 110 – 117 .
- Bessekhouad , Y. , Chaoui , N. , Trzpit , M. et al. ( 2006 ). UV–vis versus visible degradation of Acid Orange II in a coupled CdS/TiO 2 semiconductors suspension . Journal of Photochemistry and Photobiology A: Chemistry 183 ( 1, 2 ): 218 – 224 .
- Daghrir , R. , Drogui , P. , and Robert , D. ( 2013 ). Modified TiO 2 for environmental photocatalytic applications: a review . Industrial & Engineering Chemistry Research 52 ( 10 ): 3581 – 3599 .
- Yella , A. , Mugnaioli , E. , Therese , H.A. et al. ( 2009 ). Synthesis of fullerene-and nanotube-like SnS 2 nanoparticles and Sn/S/carbon nanocomposites . Chemistry of Materials 21 ( 12 ): 2474 – 2481 .
- Zhang , Y.C. , Du , Z.N. , Li , S.Y. et al. ( 2010 ). Novel synthesis and high visible light photocatalytic activity of SnS 2 nanoflakes from SnCl 2 ·2H 2 O and S powders . Applied Catalysis B: Environmental 95 ( 1, 2 ): 153 – 159 .
- Mondal , C. , Ganguly , M. , Pal , J. et al. ( 2014 ). Morphology controlled synthesis of SnS 2 nanomaterial for promoting photocatalytic reduction of aqueous Cr(VI) under visible light . Langmuir 30 ( 14 ): 4157 – 4164 .
- Yang , C. , Wang , W. , Shan , Z. et al. ( 2009 ). Preparation and photocatalytic activity of high-efficiency visible-light-responsive photocatalyst SnS x /TiO 2 . Journal of Solid State Chemistry 182 ( 4 ): 808 – 812 .
- Yang , Q.L. , Kang , S.Z. , Chen , H. et al. ( 2011 ). La 2 Ti 2 O 7 : an efficient and stable photocatalyst for the photoreduction of Cr(VI) ions in water . Desalination 266 ( 1–3 ): 149 – 153 .
- Tuprakay , S. and Liengcharernsit , W. ( 2005 ). Lifetime and regeneration of immobilized titania for photocatalytic removal of aqueous hexavalent chromium . Journal of Hazardous Materials 124 ( 1–3 ): 53 – 58 .
- Zhang , K. , Kemp , K.C. , and Chandra , V. ( 2012 ). Homogeneous anchoring of TiO 2 nanoparticles on graphene sheets for waste water treatment . Materials Letters 81 : 127 – 130 .
- Wang , L. , Li , X. , Teng , W. et al. ( 2013 ). Efficient photocatalytic reduction of aqueous Cr(VI) over flower-like SnIn 4 S 8 microspheres under visible light illumination . Journal of Hazardous Materials 244 : 681 – 688 .
- Pan , X. and Xu , Y.-J. ( 2013 ). Defect-mediated growth of noble-metal (Ag, Pt, and Pd) nanoparticles on TiO 2 with oxygen vacancies for photocatalytic redox reactions under visible light . The Journal of Physical Chemistry C 117 ( 35 ): 17996 – 18005 .
- Liu , S. , Qu , Z.P. , Han , X.W. et al. ( 2004 ). A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide . Catalysis Today 93 : 877 – 884 .
- Yeh , C.L. , His , H.C. , Li , K.C. et al. ( 2015 ). Improved performance in capacitive deionization of activated carbon electrodes with a tunable mesopore and micropore ratio . Desalination 367 : 60 – 68 .
- Porada , S. , Borchardt , L. , Ochatz , M. et al. ( 2013 ). Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization . Energy & Environmental Science 6 ( 12 ): 3700 – 3712 .
- Suss , M.E. , Porada , S. , Sun , X. et al. ( 2015 ). Water desalination via capacitive deionization: what is it and what can we expect from it? Energy & Environmental Science 8 ( 8 ): 2296 – 2319 .
- Liu , Y. , Xu , X. , Wang , M. et al. ( 2015 ). Metal–organic framework-derived porous carbon polyhedra for highly efficient capacitive deionization . Chemical Communications 51 ( 60 ): 12020 – 12023 .
- Xu , X. , Liu , Y. , Lu , T. et al. ( 2015 ). Rational design and fabrication of graphene/carbon nanotubes hybrid sponge for high-performance capacitive deionization . Journal of Materials Chemistry A 3 ( 25 ): 13418 – 13425 .
- Porada , S. , Biesheuvel , P. , and Presser , V. ( 2015 ). Comment on “Sponge-templated preparation of high surface area graphene with ultrahigh capacitive deionization performance.” Advanced Functional Materials 25 ( 2 ): https://doi.org/10.1002/adfm.201401101 .
- Wu , T. et al. ( 2015 ). Asymmetric capacitive deionization utilizing nitric acid treated activated carbon fiber as the cathode . Electrochimica Acta 176 : 426 – 433 .
- Liu , H. , Liu , S. , Zhang , Z. et al. ( 2016 ). Hydrothermal etching fabrication of TiO 2 @graphene hollow structures: mutually independent exposed {001} and {101} facets nanocrystals and its synergistic photocaltalytic effects . Scientific Reports 6 : 33839 .
- Chen , Z. , Li , Y. , Gua , M. et al. ( 2016 ). One-pot synthesis of Mn-doped TiO 2 grown on graphene and the mechanism for removal of Cr(VI) and Cr(III) . Journal of Hazardous Materials 310 : 188 – 198 .
- Djurišić , A.B. , He , Y. , and Ng , A.M. ( 2020 ). Visible-light photocatalysts: prospects and challenges . APL Materials 8 ( 3 ): 030903 .
- Wang , Y. , Ma , X. , Li , H. et al. ( 2016 ). Recent advances in visible-light driven photocatalysis . Advanced Catalytic Materials 12 : 337 .